
3GPP TSG CT WG4 Meeting #86-bis
C4-187261

Vilnius, Lithuania, 15-19 October 2018

Source:
Ericsson
Title:
Pseudo-CR on H2 mapping over QUIC
Spec:
3GPP TR 29.893 v0.2.0
Agenda item:
6.1.3
Document for:
Decision

1. Introduction
-
2. Reason for Change
Introduce the considerations needed to run HTTP2 over QUIC
3. Conclusions

-
4. Proposal

It is proposed to agree the following changes to 3GPP TR 29.893 v0.2.0
* * * First Change * * * *
6
HTTP/2 Over QUIC

6.1
Introduction

This clause will contain description about the mapping and usage of HTTP/2 over QUIC including some of the not so well understood/documented aspects.

6.x
Considerations for HTTP/2 Over QUIC

6.x.1
General

3GPP TS 29.500 [4] mandates HTTP2 over TCP as protocols to be use for SBI. Running HTTP2 over QUIC requires special consideration as many of the HTTP2 features can be taken care of by QUIC. HTTP2 and QUIC contains similar features like stream, framing, multiplexing. Moving from HTTP2 over TCP to HTTP2 over QUIC will require the application layer protocol behavior and implementation to be changed. Hence, it is important to identify the changes required both in HTTP2 and QUIC implementations. This section details the features and properties need special attention when HTTP2 is transported over QUIC.

6.x.2
Connection setup and management

To use HTTP over QUIC requires explicit discovery of QUIC protocol support in the client and server. The server can advertise the support for the QUIC as a transport protocol then client can use some explicit information provided by the server or prior knowledge of the previous contact to the server to select QUIC as a transport protocol. Different alternatives to do the discovery of QUIC support in the NFs are discussed in section 7.2.

QUIC connection level settings are communicated between client and server at the crypto handshake. However, the HTTP/QUIC specific settings (see IETF draft-ietf-quic-http-13 [7]) are set via SETTINGs frame sent by the client and server via the HTTP control stream after QUIC connection is established.

As QUIC allows stream multiplexing the HTTP clients can multiplex multiple HTTP2 requests on to same QUIC connection as long as the server has the authority to serve the request. This reduces the need for multiple connections and improves performance by avoiding the time it takes to establish new connections. In case of SBI, every consuming NF will originate request to a specific provider NF. Hence, there will be one to one mapping between the server and origin. However, it is also possible to install a frontend proxy to hide a number of provider NFs that is managed by one administration. In this case the NF consumer will establish single connection towards the frontend proxy and multiplex request towards different NF providers over a single QUIC connection, treating the frontend proxy as a server endpoint.

6.x.3
Streams, framing and multiplexing

The QUIC stream number space is larger than that of HTTP2. When transported over QUIC, HTTP2 does not need to use all the framing concepts, for example – it does not need to use stream number.

Another important difference is the HTTP/QUIC only guarantee ordered delivery on the stream level while HTTP2 expects absolute ordering on the frames across multiple streams. HTTP/QUIC will break any such ordering assumption.

When HTTP runs over QUIC the HTTP layer does not require to do any stream multiplexing. QUIC maps each of its streams to a HTTP transaction. The additional difference is that in the current specification, HTTP/QUIC does not use server initiated bidirectional stream. This means unidirectional streams are created from both the client and server with indication of the purpose of the stream as stream header at the beginning of the streams. All client initiated bi-directional streams are used for requests and responses.

The HTTP/QUIC frame type definition follows QUIC encoding concept. QUIC uses a variable length integer encoding which allows a larger number of stream IDs compared to HTTP2 encoding. This change results in different HTTP/QUIC frame types and requires a mapping from HTTP2 to HTTP/QUIC frame types. HTTP/QUIC (see IETF draft-ietf-quic-http-13 [7]) defines this mapping of HTTP2 over HTTP/QUIC.

6.x.4
Prioritization

In case of HTTP/QUIC the clients can set stream priority as defined in IETF RFC 7540 [13], at the creation of the stream and update the priority using PRIORITY frame. However, in case of HTTP/QUIC, only the client is allowed send PRIORITY frames over control stream. The priority section on the HEADER frame is removed.

6.x.5
Server Push

HTTP/QUIC uses a different server push mechanism than what is defined in IETF RFC 7540 [13]. HTTP/QUIC uses two new frames to accomplish server push – a) a modified PUSH_PROMISE frame and b) a MAX_PUSH_ID. The modified PUSH_PROMISE frame does not refer to a stream as originally designed in IETF RFC 7540 [13], it uses as PUSH_ID that uniquely identifies a server push. HTTP/QUIC defines 3 types of PUSH_IDs for now. The server can only push, and it can initiate pushing only one it receives a MAX_PUSH_ID frame from the corresponding client. Details of the modified server push mechanism is described in IETF draft-ietf-quic-http-13 [7].
6.x.6
Compression (HPACK vs QPACK)

The Header Compression for HTTP/2, HPACK (see IETF RFC 7541 [14]), provides compression of HTTP header fields. Significantly reducing the headers, especially for sequential HTTP/2 request responses to the same server, where repeated and redundant information is efficiently compressed. The use of HPACK in HTTP/2 is one of the more significant performance improvements compared to HTTP 1.0 or 1.1. HPACK was defined based on one important assumption, namely the TCP in-order delivery of the different HTTP/2 frame types across all the streams. Thus, the encoder knows in which order the decoder will receive and process the various frames, and how the decoder state will be updated. HTTP/2 over QUIC does not provide the same deterministic and guaranteed in order delivery mechanism between different HTTP requests. HTTP2/QUIC can avoid this head of line blocking and provide improved performance by delivering to higher layers the HTTP messages in the order they are successfully delivered to the peer. However, if one would use HPACK without modifications, this could result in the decoder blocking or producing the wrong output. Therefore, header Compression for HTTP over QUIC, QPACK (see IETF draft-ietf-quic-qpack-01 [10]), is being defined.

QPACK is a redesigned version of HPACK that can support out-of-order delivery. It allows flexibility in the encoder to perform trade-offs between compression ratios and likelihood of head of line blocking due to out of order delivery. The changes in QPACK allows for much reduced head of line blocking at similar compression efficiency for a given packet loss rate. It also provides the implementation freedom to select how robust the transaction should be against packet loss. This at the cost of requiring HTTP/2 servers to implement the new QPACK mechanism, even if some reuse of the HPACK implementation is possible.

* * * End of Changes * * * *

