3GPP TS 29.cde V0.1.0 (2018-07)
Technical Specification

3rd Generation Partnership Project;

Technical Specification Group Core Network and Terminals;

5G System; Public Land Mobile Network (PLMN)
Interconnection;

Stage 3
(Release 15)
 [image: image1.jpg]
[image: image2.png]
The present document has been developed within the 3rd Generation Partnership Project (3GPP TM) and may be further elaborated for the purposes of 3GPP..
The present document has not been subject to any approval process by the 3GPP Organizational Partners and shall not be implemented.
This Specification is provided for future development work within 3GPP only. The Organizational Partners accept no liability for any use of this Specification.
Specifications and Reports for implementation of the 3GPP TM system should be obtained via the 3GPP Organizational Partners' Publications Offices.

Keywords

<keyword[, keyword, …]>

3GPP

Postal address

3GPP support office address

650 Route des Lucioles - Sophia Antipolis

Valbonne - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Internet

http://www.3gpp.org

Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© 2017, 3GPP Organizational Partners (ARIB, ATIS, CCSA, ETSI, TSDSI, TTA, TTC).

All rights reserved.
UMTS™ is a Trade Mark of ETSI registered for the benefit of its members

3GPP™ is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners
LTE™ is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners
GSM® and the GSM logo are registered and owned by the GSM Association

Contents

6Foreword

Introduction
6
1
Scope
7
2
References
7
3
Definitions, symbols and abbreviations
7
3.1
Definitions
8
3.2
Symbols
8
3.3
Abbreviations
8
4
General Description
8
4.1
Introduction
8
4.2
N32 Interface
8
4.2.1
General
8
4.2.2
N32-c Interface
9
4.2.3
N32-f Interface
9
4.3
Protocol Stack
9
4.3.1
General
9
4.3.2
HTTP/2 Protocol
10
4.3.2.1
General
10
4.3.2.2
HTTP standard headers
10
4.3.2.3
HTTP custom headers
11
4.3.2.4
HTTP/2 connection management
11
4.3.3
Transport Protocol
11
4.3.4
Serialization Protocol
11
5
N32 Procedures
11
5.1
Introduction
11
5.2
N32 Initial Handshake Procedures (N32-c)
12
5.2.1
General
12
5.2.2
Security Capability Negotiation Procedure
12
5.2.3
Parameter Exchange Procedure
13
5.2.3.1
General
13
5.2.3.2
Parameter Exchange Procedure for Cipher Suite Negotiation
13
5.2.3.3
Parameter Exchange Procedure for Protection Policy Negotiation
13
5.3
JOSE Protected Message Forwarding Procedure on N32 (N32-f)
14
5.3.1
Introduction
14
5.3.2
Message Reformatting
14
5.3.3
Message Forwarding to Peer SEPP
14
6
API Definitions
15
6.1
N32 Initial Handshake API
15
6.1.1
API URI
15
6.1.2
Usage of HTTP
15
6.1.2.1
General
15
6.1.2.2
HTTP standard headers
15
6.1.2.2.1
General
15
6.1.2.2.2
Content type
15
6.1.2.3
HTTP custom headers
15
6.1.2.3.1
General
15
6.1.3
Resources
16
6.1.3.1
Overview
16
6.1.3.2
Resource: Capability
16
6.1.3.2.1
Resource Description
16
6.1.3.2.2
Resource Definition
16
6.1.3.2.3
Resource Standard Methods
16
6.1.3.2.3.1
< method 1 >
17
6.1.3.2.3.2
< method 2 >
17
6.1.3.3
Resource: Param-Exchange
17
6.1.3.3.1
Resource Description
17
6.1.3.3.2
Resource Definition
17
6.1.3.3.3
Resource Standard Methods
18
6.1.3.3.3.1
< method 1 >
18
6.1.3.3.3.2
< method 2 >
18
6.1.4
Custom Operations without Associated Resources
19
6.1.4.1
Overview
19
6.1.4.2
Operation: <operation 1>
19
6.1.4.2.1
Description
19
6.1.4.2.2
Operation Definition
19
6.1.4.3
Operation: < operation 2>
19
6.1.5
Data Model
20
6.1.5.1
General
20
6.1.5.2
Structured data types
20
6.1.5.2.1
Introduction
20
6.1.5.2.2
Type: <TypeName 1>
20
6.1.5.2.3
Type: <TypeName 2>
21
6.1.5.3
Simple data types and enumerations
21
6.1.5.3.1
Introduction
21
6.1.5.3.2
Simple data types
21
6.1.5.3.3
Enumeration: <EnumType1>
21
6.1.5.3.4
Enumeration: <EnumType2>
21
6.1.5.4
Binary data
21
6.1.5
Error Handling
21
6.2
JOSE Protected Message Forwarding API on N32
21
6.2.1
API URI
21
6.2.2
Usage of HTTP
22
6.2.2.1
General
22
6.2.2.2
HTTP standard headers
22
6.2.2.2.1
General
22
6.2.2.2.2
Content type
22
6.2.2.3
HTTP custom headers
22
6.2.2.3.1
General
22
6.2.3
Resources
22
6.2.3.1
Overview
22
6.2.3.2
Resource: Forward
23
6.2.3.2.1
Resource Description
23
6.2.3.2.2
Resource Definition
23
6.2.3.2.3
Resource Standard Methods
23
6.2.3.2.3.1
<method 1> (e.g POST)
23
6.2.4
Custom Operations without Associated Resources
23
6.2.4.1
Overview
23
6.2.4.2
Operation: <operation 1>
24
6.2.4.2.1
Description
24
6.2.4.2.2
Operation Definition
24
6.2.4.3
Operation: < operation 2>
24
6.2.5
Data Model
25
6.2.5.1
General
25
6.2.5.2
Structured data types
25
6.2.5.2.1
Introduction
25
6.2.5.2.2
Type: <TypeName 1>
25
6.2.5.2.3
Type: <TypeName 2>
25
6.2.5.3
Simple data types and enumerations
26
6.2.5.3.1
Introduction
26
6.2.5.3.2
Simple data types
26
6.2.5.3.3
Enumeration: <EnumType1>
26
6.2.5.3.4
Enumeration: <EnumType2>
26
6.2.6
Error Handling
26
Annex <A> (normative): OpenAPI Specification
26
Annex (informative): <Informative annex title>
26
Annex <X> (informative): Change history
27

Foreword

This Technical Specification has been produced by the 3rd Generation Partnership Project (3GPP).

The contents of the present document are subject to continuing work within the TSG and may change following formal TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an identifying change of release date and an increase in version number as follows:

Version x.y.z

where:

x
the first digit:

1
presented to TSG for information;

2
presented to TSG for approval;

3
or greater indicates TSG approved document under change control.

y
the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections, updates, etc.

z
the third digit is incremented when editorial only changes have been incorporated in the document.

Introduction

This clause is optional. If it exists, it is always the second unnumbered clause.

1
Scope

The present document specifies the stage 3 protocol and data model for the PLMN interconnection Interface. It provides stage 3 protocol definitions and message flows, and specifies the APIs for the procedures on the PLMN interconnection interface (i.e N32).

The 5G System stage 2 architecture and procedures are specified in 3GPP TS 23.501 [2] and 3GPP TS 23.502 [3].

The Technical Realization of the Service Based Architecture and the Principles and Guidelines for Services Definition are specified in 3GPP TS 29.500 [4] and 3GPP TS 29.501 [5].

The stage 2 level N32 procedures are specified in 3GPP TS 33.501 [6].

2
References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

-
References are either specific (identified by date of publication, edition number, version number, etc.) or non‑specific.

-
For a specific reference, subsequent revisions do not apply.

-
For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same Release as the present document.

[1]
3GPP TR 21.905: "Vocabulary for 3GPP Specifications".
[2]
3GPP TS 23.501: "System Architecture for the 5G System; Stage 2".

[3]
3GPP TS 23.502: "Procedures for the 5G System; Stage 2".

[4]
3GPP TS 29.500: "5G System; Technical Realization of Service Based Architecture; Stage 3".

[5]
3GPP TS 29.501: "5G System; Principles and Guidelines for Services Definition; Stage 3".

[6]
3GPP TS 33.501: "Security architecture and procedures for 5G system".
[7]
IETF RFC 7540: "Hypertext Transfer Protocol Version 2 (HTTP/2)".
[8]
IETF RFC 8259: "The JavaScript Object Notation (JSON) Data Interchange Format".
[9]
IETF RFC 7231: "Hypertext Transfer Protocol (HTTP/1.1): Semantics and Content".
[10]
IETF RFC 7230: "Hypertext Transfer Protocol (HTTP/1.1): Message Syntax and Routing".
[11]
IETF RFC 793: "Transmission Control Protocol".

3
Definitions, symbols and abbreviations
Delete from the above heading those words which are not applicable.

Clause numbering depends on applicability and should be renumbered accordingly.

3.1
Definitions

For the purposes of the present document, the terms and definitions given in 3GPP TR 21.905 [1] and the following apply. A term defined in the present document takes precedence over the definition of the same term, if any, in 3GPP TR 21.905 [1].

c-SEPP: The SEPP that is present on the NF service consumer side is called the c-SEPP.

p-SEPP: The SEPP that is present on the NF service producer side is called the p-SEPP.

c-IPX: The IPX on the NF service consumer side.
p-IPX: The IPX of the NF service producer side.
3.2
Symbols

For the purposes of the present document, the following symbols apply:

Symbol format (EW)

<symbol>
<Explanation>

3.3
Abbreviations

For the purposes of the present document, the abbreviations given in 3GPP TR 21.905 [1] and the following apply. An abbreviation defined in the present document takes precedence over the definition of the same abbreviation, if any, in 3GPP TR 21.905 [1].

Abbreviation format (EW)

<ACRONYM>
<Explanation>

4
General Description
4.1
Introduction
This clause provides a general description of the interconnect interfaces used between the PLMNs for transporting the service based interface message exchanges.
4.2
N32 Interface

4.2.1
General
The N32 interface is used between the SEPPs of a VPLMN and a HPLMN in roaming scenarios. The SEPP that is on the NF service consumer side is called the c-SEPP and the SEPP that is on the NF service producer is called the p-SEPP. The N32 interface can be logically considered as 2 separate interfaces as given below.

-
N32-c, a control plane interface between the SEPPs for performing initial handshake and negotiating the parameters to be applied for the actual N32 message forwarding.

-
N32-f, a forwarding interface between the SEPPs which is used for forwarding the communication between the NF service consumer and the NF service producer after applying application level security protection.

4.2.2
N32-c Interface
The following figure shows the scope of the N32-c interface.

[image: image3.emf]c-SEPPp-SEPPN32-c

Figure 4.2.2-1: N32-c Interface
The N32-c interface provides the following functionalities:
-
Initial handshake procedure between the c-SEPP and the p-SEPP that involves capability negotiation and parameter exchange as specified in 3GPP TS 33.501 [6].

4.2.3
N32-f Interface

The following figure shows the scope of the N32-f interface.

[image: image4.emf]c-SEPPp-SEPPc-IPXp-IPXN32-fN32-fN32-f

Figure 4.2.3-1: N32-f Interface
The N32-f interface shall be used only if Application Level Security (ALS) is negotiated between the SEPPs using N32-c.

The N32-f interface provides the following functionalities:

-
Message protection of the information exchanged between the NF service consumer and the NF service producer across PLMNs by applying application layer security mechanisms as specified in 3GPP TS 33.501 [6].

-
Forwarding of the application layer protected message from a SEPP in one PLMN to a SEPP in another PLMN. Such forwarding may involve IPX providers on path.

-
If IPX providers are on the path from c-SEPP to p-SEPP, the forwarding on the N32-f interface may involve the insertion of content modification instructions which the receiving SEPP applies after verifying the integrity of such modification instructions.
4.3
Protocol Stack
4.3.1
General
The protocol stack for the N32 interface is shown below in Figure 4.2.1-1

[image: image5.emf]ApplicationHTTP/2TCPIPL2TLS

Figure 4.3.1-1: N32 Protocol Stack
The N32 interfaces (N32-c and N32-f) use HTTP/2 protocol (see subclause 4.2.2) with JSON (see subclause 4.2.4) as the application layer serialization protocol. For the security protection at the transport layer, the SEPPs shall support TLS as specified in 3GPP TS 33.501 [6].

For the N32-f interface, the application layer (i.e the JSON payload) encapsulates the complete HTTP/2 message between the NF service consumer and the NF service producer, by transforming the HTTP/2 headers and the body into specific JSON attributes as specified in subclause 6.2.
4.3.2
HTTP/2 Protocol

4.3.2.1
General
HTTP/2 as described in IETF RFC 7540 [7] shall be used for N32 interface.
4.3.2.2
HTTP standard headers
The HTTP request standard headers and the HTTP response standard headers that shall be supported on the N32 interface are defined in Table 4.2.2.2-1 and in Table 4.2.2.2-2 respectively.

Table 4.3.2.2-1: Mandatory to support HTTP request standard headers

	Name
	Reference
	Description

	Accept
	IETF RFC 7231 [9]
	This header is used to specify response media types that are acceptable.

	Accept-Encoding
	IETF RFC 7231 [9]
	This header may be used to indicate what response content-encodings (e.g gzip) are acceptable in the response.

	Content-Length
	IETF RFC 7230 [10]
	This header is used to provide the anticipated size, as a decimal number of octets, for a potential payload body.

	Content-Type
	IETF RFC 7231 [9]
	This header is used to indicate the media type of the associated representation.

Table 4.3.2.2-2: Mandatory to support HTTP response standard headers

	Name
	Reference
	Description

	Content-Length
	IETF RFC 7230 [10]
	This header may be used to provide the anticipated size, as a decimal number of octets, for a potential payload body.

	Content-Type
	IETF RFC 7231 [9]
	This header shall be used to indicate the media type of the associated representation.

	Content-Encoding
	IETF RFC 7231 [9]
	This header may be used in some responses to indicate to the HTTP/2 client the content encodings (e.g gzip) applied to the response body beyond those inherent in the media type.

4.3.2.3
HTTP custom headers
The HTTP custom headers specified in subclause 5.2.3 3GPP TS 29.500 [4] shall be supported on the N32 interface.
4.3.2.4
HTTP/2 connection management
Each SEPP initiates HTTP/2 connections towards its peer SEPP for the following purposes

-
N32-c interface

-
N32-f interface

The scope of the HTTP/2 connection used for the N32-c interface is short-lived. Once the initial handshake is completed the connection is torn down as specified in 3GPP TS 33.501 [6]. The HTTP/2 connection used for N32-c is end to end between the SEPPs and does not involve an IPX to intercept the HTTP/2 connection, though an IPX may be involved for IP level routing.

The scope of the HTTP/2 connection used for the N32-f interface is long-lived. The N32-f HTTP/2 connection at a SEPP can be:

-
Towards a SEPP of another PLMN without involving any IPX intermediaries; or

-
Towards a SEPP of another PLMN via IPX. In this case the HTTP/2 connection from a SEPP terminates at the next hop IPX. For the N32-f interface the HTTP/2 connection management requirements specified in subclause 5.2.6 of 3GPP TS 29.500 [4] shall be applicable.
4.3.3
Transport Protocol
The Transmission Control Protocol as described in IETF RFC 793 [11] shall be used as transport protocol as required by HTTP/2 (see IETF RFC 7540 [7]). When there is no IPX between the SEPPs, TLS shall be used for security protection (see 3GPP TS 33.501 [6]). When there is IPX between the SEPPs, TLS should be used for security protection as specified in 3GPP TS 33.501 [6].
NOTE:
When using TCP as the transport protocol, an HTTP/2 connection is mapped to a TCP connection.
4.3.4
Serialization Protocol
The JavaScript Object Notation (JSON) format as described in IETF RFC 8259 [8] shall be used as the serialization protocol.
5
N32 Procedures
5.1
Introduction
The procedures on the N32 interface are split into two categories:

-
Procedures that happen end to end between the SEPPs on the N32-c interface;

-
Procedures that are used for the forwarding of messages on the service based interface between the NF service consumer and the NF service producer via the SEPP across the N32-f interface.
5.2
N32 Initial Handshake Procedures (N32-c)
5.2.1
General
The initial handshake procedure is used between the SEPP on the NF service consumer side (c-SEPP) and the SEPP on the NF service producer side (p-SEPP) to mutually authenticate each other and negotiate the security mechanism to use over N32-f along with associated security configuration parameters.

A HTTP/2 connection shall be established between the c-SEPP and the p-SEPP end to end over TLS. The HTTP/2 connection shall be torn down after the completion of the initial handshake procedure. The following initial handshake procedures are specified in the subclauses below.

-
Security Capability Negotiation Procedure

-
Parameter Exchange Procedure
5.2.2
Security Capability Negotiation Procedure

The c-SEPP shall initiate a Security Capability Negotiation procedure towards the p-SEPP to agree on a security mechanism to use for protecting NF service related signalling over N32-f. The procedure is described in Figure 5.2.2-1 below.

[image: image6.emf]C-SEPPP-SEPP 1. POST <URI TBD> (SecNegotiateReqData)2a. 200 OK (SecNegotiateRspData)2b. 4xx/5xx (SecNegotiateErrData)

Figure 5.2.2-1: Security Capability Negotiation Procedure

1.
The C-SEPP issues a HTTP POST request towards the P-SEPP with the request body containing the "SecurityNeogiateReqData" IE carrying the following information

-
Supported security capabilities (i.e ALS and/or TLS)

2a.
On successful processing of the request, the P-SEPP shall respond to the C-SEPP with a "200 OK" status code and a POST response body that contains the following information

-
Selected security capability (i.e ALS or TLS)

The P-SEPP compares the C-SEPP's supported security capabilities to its own supported security capabilities and selects, based on its local policy, a security mechanism, which is supported by both the C-SEPP and the P-SEPP. If the selected security capability indicates any other capability other than ALS, then the HTTP/2 connection initiated between the two SEPPs for the initial handshake procedures shall be terminated.

2b.
On failure, the P-SEPP shall respond to the C-SEPP with an appropriate 4xx/5xx status code as specified in clause 6.1.3.2.3.1 or 6.1.4.2.

Editor's Note: It is FFS whether a resource standard method is to be used or a custom operation without resource needs to be used. The clause number above need to be updated once this is decided.

Editor's Note: It is FFS whether the Security Capability Negotiation procedure can be performed periodically.
Editor's Note: It is FFS whether the Security Capability Negotiation procedure needs to be executed on both directions or if it is enough to exchange both the SEPP's capabilities in one procedure interaction itself.
5.2.3
Parameter Exchange Procedure

5.2.3.1
General
The parameter exchange procedure shall be executed if the security capability negotiation procedure selected the security capability as ALS. The parameter exchange procedure is performed to:

· -
Agree on a cipher suite to use for protecting NF service related signalling over N32-f; and

· -
Optionally, negotiate the protection policies to use for protecting NF service related signalling over N32.

5.2.3.2
Parameter Exchange Procedure for Cipher Suite Negotiation

The parameter exchange procedure for cipher suite negotiation shall be performed immediately after the security capability negotiation procedure if the selected security policy is ALS.
The procedure is described in Figure 5.2.3.2-1 below.

[image: image7.emf]C-SEPPP-SEPP 1. POST <URI TBD> (SecParamExchReqData)2a. 200 OK (SecParamExchRspData)2b. 4xx/5xx (SecParamExchErrData)

Figure 5.2.3.2-1: Parameter Exchange Procedure for Cipher Suite Negotiation
1.
The C-SEPP issues a HTTP POST request towards the P-SEPP with the request body containing the "SecParamExchReqData" IE carrying the following information

-
Supported cipher suites;

2a.
On successful processing of the request, the P-SEPP shall respond to the C-SEPP with a "200 OK" status code and a POST response body that contains the following information

-
Selected cipher suite

The P-SEPP compares the C-SEPP's supported cipher suites to its own supported cipher suites and selects, based on its local policy, a cipher suite, which is supported by both the C-SEPP and the P-SEPP.

2b.
On failure, the P-SEPP shall respond to the C-SEPP with an appropriate 4xx/5xx status code as specified in clause 6.1.3.3.3.1 or 6.1.4.3.

Editor's Note: It is FFS whether a resource standard method is to be used or a custom operation without resource needs to be used. The clause number above need to be updated once this is decided.
Editor's Note: It is FFS whether the Parameter Exchange procedure for negotiating protection policies can be piggy backed over the Parameter Exchange Procedure for cipher suite exchange.

Editor's Note: It is FFS whether the Parameter Exchange procedure for negotiating cipher suites can be performed periodically.

Editor's Note: It is FFS whether the Parameter Exchange procedure needs to be executed on both directions or if it is enough to exchange both the SEPP's parameters in one procedure interaction itself.
5.2.3.3
Parameter Exchange Procedure for Protection Policy Negotiation
The parameter exchange procedure for protection policy negotiation may be performed any time. If a HTTP/2 connection does not exist towards the peer SEPP at the time of initiating this procedure, the HTTP/2 connection shall be established.
The procedure is described in Figure 5.2.3.3-1 below.

[image: image8.emf]C-SEPPP-SEPP 1. POST <URI TBD> (SecParamExchReqData)2a. 200 OK (SecParamExchRspData)2b. 4xx/5xx (SecParamExchErrData)

Figure 5.2.3.3-1: Parameter Exchange Procedure for Protection Policy Negotiation
1.
The C-SEPP issues a HTTP POST request towards the P-SEPP with the request body containing the "SecParamExchReqData" IE carrying the following information

-
Protection policy information

2a.
On successful processing of the request, the P-SEPP shall respond to the C-SEPP with a "200 OK" status code and a POST response body that contains the following information

-
Selected protection policy information

The C-SEPP shall store the selected protection policy information and shall apply this policy for subsequent message transfers over N32-f.

2b.
On failure, the P-SEPP shall respond to the C-SEPP with an appropriate 4xx/5xx status code as specified in clause 6.1.3.3.3.1 or 6.1.4.3.

Editor's Note: It is FFS whether a resource standard method is to be used or a custom operation without resource needs to be used. The clause number above need to be updated once this is decided.
Editor's Note: It is FFS whether the Parameter Exchange procedure needs to be executed on both directions or if it is enough to exchange both the SEPP's parameters in one procedure interaction itself.
5.3
JOSE Protected Message Forwarding Procedure on N32 (N32-f)
5.3.1
Introduction
5.3.2
Message Reformatting
This clause will contain the details of the message reformatting procedure, what parts of the message does a SEPP modifies and what capabilities / parameters that it is dependent upon.
5.3.3
Message Forwarding to Peer SEPP
This clause will contain the details of the message forwarding procedure on N32, how the SEPP encapsulates the NF service consumer to NF service producer API call into an N32 message and how the receiving SEPP processes it.

6
API Definitions
6.1
N32 Initial Handshake API

6.1.1
API URI
This subclause specifies the API Name and Version.

6.1.2
Usage of HTTP

6.1.2.1
General

This subclause will include a reference to clause 4.2 for the description of the Transport and HTTP/2.0 protocol stack requirements.

6.1.2.2
HTTP standard headers
6.1.2.2.1
General

6.1.2.2.2
Content type

This subclause will indicate the encoding of HTTP requests/responses and the applicable MIME media type for the related Content-Type header.

6.1.2.3
HTTP custom headers
6.1.2.3.1
General

This clause will list, if applicable, the possible reused HTTP custom headers and the definition of new HTTP custom headers introduced by this specification.

6.1.3
Resources

6.1.3.1
Overview

[image: image9.emf]//{apiRoot}/n32-init-handshake/v1/capability/param-exchange

Figure 6.1.3.1-1: Resource URI structure

Table 6.1.3.1-1 provides an overview of the resources and applicable HTTP methods.

Table 6.1.3.1-1: Resources and methods overview

	Resource name
	Resource URI
	HTTP method
	Description

	
	
	
	

	
	
	
	

	
	
	
	

6.1.3.2
Resource: Capability

6.1.3.2.1
Resource Description
This subclause will specify what the resource represents or what it is used for.
6.1.3.2.2
Resource Definition

This subclause will describe the Resource URI and the supported resource variables.

Resource URI: <resource URI>
This resource shall support the resource URI variables defined in table 6.2.3.2.2-1.

Table 6.2.3.2.2-1: Resource URI variables for this resource
	Name
	Definition

	
	

	
	

	
	

6.1.3.2.3
Resource Standard Methods
The following subclauses will specify the standard methods supported by the resource.

It will describe, for each method, the use of the method, the URI query parameters supported by the method, request and response data structures and response codes, and if applicable, HTTP headers specific to the operation.

6.1.3.2.3.1
< method 1 >

This subclause will specify the meaning of the method applied on the resource.

This method shall support the URI query parameters specified in table 6.1.3.2.3.1-1.

Table 6.1.3.2.3.1-1: URI query parameters supported by the <method 1> method on this resource
	Name
	Data type
	P
	Cardinality
	Description

	<name> or n/a
	<type> or <leave empty>
	<M, C or O>
	0..1 or 1 or 0..N or <leave empty>
	<only if applicable>

This method shall support the request data structures specified in table 6.2.3.2.3.1-2 and the response data structures and response codes specified in table 6.2.3.2.3.1-3.

Table 6.1.3.2.3.1-2: Data structures supported by the <method 1> Request Body on this resource

	Data type
	P
	Cardinality
	Description

	<type> or n/a
	<M, C or O>
	<1 (i.e. object)> or <0..N, 1..N, m..n (i.e. array)> or <leave empty>
	<only if applicable>

Table 6.1.3.2.3.1-3: Data structures supported by the <method 1> Response Body on this resource

	Data type
	P
	Cardinality
	Response

codes
	Description

	<type> or n/a
	<M, C or O>
	<1 (i.e. object)> or <0..N, 1..N, m..n (i.e. array)> or <leave empty>
	<list applicable codes with name from IETF RFC 7231, etc.>
	<Meaning of the success case>

or

<Meaning of the error case with additional statement regarding error handling>

6.1.3.2.3.2
< method 2 >

And so on if there are more than two methods supported by the resource. Same structure as in subclause 6.1.3.2.3.1.
6.1.3.3
Resource: Param-Exchange

6.1.3.3.1
Resource Description
This subclause will specify what the resource represents or what it is used for.
6.1.3.3.2
Resource Definition

This subclause will describe the Resource URI and the supported resource variables.

Resource URI: <resource URI>
This resource shall support the resource URI variables defined in table 6.1.3.3.2-1.

Table 6.1.3.3.2-1: Resource URI variables for this resource
	Name
	Definition

	
	

	
	

	
	

6.1.3.3.3
Resource Standard Methods
The following subclauses will specify the standard methods supported by the resource.

It will describe, for each method, the use of the method, the URI query parameters supported by the method, request and response data structures and response codes, and if applicable, HTTP headers specific to the operation.

6.1.3.3.3.1
< method 1 >

This subclause will specify the meaning of the method applied on the resource.

This method shall support the URI query parameters specified in table 6.1.3.2.3.1-1.

Table 6.1.3.3.3.1-1: URI query parameters supported by the <method 1> method on this resource
	Name
	Data type
	P
	Cardinality
	Description

	<name> or n/a
	<type> or <leave empty>
	<M, C or O>
	0..1 or 1 or 0..N or <leave empty>
	<only if applicable>

This method shall support the request data structures specified in table 6.2.3.2.3.1-2 and the response data structures and response codes specified in table 6.2.3.2.3.1-3.

Table 6.1.3.3.3.1-2: Data structures supported by the <method 1> Request Body on this resource

	Data type
	P
	Cardinality
	Description

	<type> or n/a
	<M, C or O>
	<1 (i.e. object)> or <0..N, 1..N, m..n (i.e. array)> or <leave empty>
	<only if applicable>

Table 6.1.3.3.3.1-3: Data structures supported by the <method 1> Response Body on this resource

	Data type
	P
	Cardinality
	Response

codes
	Description

	<type> or n/a
	<M, C or O>
	<1 (i.e. object)> or <0..N, 1..N, m..n (i.e. array)> or <leave empty>
	<list applicable codes with name from IETF RFC 7231, etc.>
	<Meaning of the success case>

or

<Meaning of the error case with additional statement regarding error handling>

6.1.3.3.3.2
< method 2 >

And so on if there are more than two methods supported by the resource. Same structure as in subclause 6.1.3.3.3.1.
6.1.4
Custom Operations without Associated Resources

6.1.4.1
Overview

This subclause will specify custom operations without any associated resource (i.e. RPC) supported by this API.

Table 6.1.4.1-1: Custom operations without associated resources

	Custom operation URI
	Mapped HTTP method
	Description

	
	
	

	
	
	

6.1.4.2
Operation: <operation 1>

Where <operation 1> is to be replaced by the name of the custom operation, e.g. Authentication_Information_Request.

It will describe, for each custom operation, the use and the URI of the operation, the HTTP method on which it is mapped, request and response data structures and response codes, and if applicable, HTTP headers specific to the operation.

6.1.4.2.1
Description

This sublause will describe the custom operation and what it is used for, and the custom operation's URI.

6.1.4.2.2
Operation Definition

This subclause will specify the custom operation and the HTTP method on which it is mapped.

This operation shall support the response data structures and response codes specified in tables 6.2.4.2.2-1 and 6.2.4.2.2-2.

Table 6.1.4.2.2-1: Data structures supported by the <e.g. POST> Request Body on this resource

	Data type
	P
	Cardinality
	Description

	<type> or n/a
	<M, C or O>
	<1 (i.e. object)> or <0..N, 1..N, m..n (i.e. array)> or <leave empty>
	<only if applicable>

Table 6.1.4.2.2-2: Data structures supported by the <e.g. POST> Response Body on this resource

	Data type
	P
	Cardinality
	Response

codes
	Description

	<type> or n/a
	<M, C or O>
	<1 (i.e. object)> or <0..N, 1..N, m..n (i.e. array)> or <leave empty>
	<list applicable codes with name from IETF RFC 7231, etc.>
	<Meaning of the success case>

or

<Meaning of the error case with additional statement regarding error handling>

6.1.4.3
Operation: < operation 2>

And so on if there are more than two custom operations supported by the service. Same structure as in subclause 6.2.4.2.

6.1.5
Data Model

6.1.5.1
General

This subclause specifies the application data model supported by the API.

Data types that may be common to multiple APIs (offered by the same or different NFs) should be specified in a new separate TS (similar approach as for TS 29.230 for Diameter AVPs).

Table 6.1.5.1-1 specifies the data types defined for the N32 interface.

Table 6.1.5.1-1: N32 specific Data Types

	Data type
	Section defined
	Description

	
	
	

Table 6.1.5.1-2 specifies data types re-used by the N32 interface protocol from other specifications, including a reference to their respective specifications and when needed, a short description of their use within the Namf service based interface.

Table 6.1.5.1-2: N32 re-used Data Types

	Data type
	Reference
	Comments

	
	
	

6.1.5.2
Structured data types

This subclause will specify the structured data types.

6.1.5.2.1
Introduction

This subclause defines the structures to be used in resource representations.

Allowed structures are: array, object.

6.1.5.2.2
Type: <TypeName 1>

"Data type" may provide the name of a named data type (structured, simple or enum) that is defined elsewhere in this document, or in a referenced document. In case of a referenced type from another document, a reference to the defining document shall be included in the "Description" column.

"Presence" (P) defines whether the presence of the information element is Mandatory (M), Conditional (C) or Optional (O) within the data structure.

"Cardinality" defines the allowed number of occurrence. A cardinality of N greater than 1 indicates an array.

"Description" describes the meaning and use of the attribute.

Table 6.1.5.2.2-1: Definition of type <TypeName 1>

	Attribute name
	Data type
	P
	Cardinality
	Description

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

6.1.5.2.3
Type: <TypeName 2>

And so on if there are more types to specify.

6.1.5.3
Simple data types and enumerations

This subclause will define simple data types and enumerations that can be referenced from data structures defined in the previous subclauses.

6.1.5.3.1
Introduction

This subclause defines simple data types and enumerations that can be referenced from data structures defined in the previous subclauses.

6.1.5.3.2
Simple data types

The simple data types defined in table 6.1.5.3.2-1 shall be supported.

Table 6.1.5.3.2-1: Simple data types

	Type Name
	Type Definition
	Description

	
	
	

6.1.5.3.3
Enumeration: <EnumType1>

The enumeration <EnumType1> represents <something>. It shall comply with the provisions defined in table 6.2.5.3.3-1.

Table 6.1.5.3.3-1: Enumeration < EnumType1>

	Enumeration value
	Description

	
	

6.1.5.3.4
Enumeration: <EnumType2>

And so on if there are more enumerations to define.

6.1.5.4
Binary data

This subclause will specify what is encoded in binary part, if multipart media type is agreed to be supported by CT4 and is supported by the API. It shall be omitted if not applicable.

6.1.5
Error Handling
This subclause will include a reference to the general error handling principles specified in TS 29.501, and further specify any general error handling aspect specific to the API, if any Error handling specific to each method (and resource) is specified in subclauses 6.1.3. and 6.1.4.

6.2
JOSE Protected Message Forwarding API on N32
6.2.1
API URI
This subclause specifies the API Name and Version.

6.2.2
Usage of HTTP

6.2.2.1
General

This subclause will include a reference to clause 4.2 for the description of the Transport and HTTP/2.0 protocol stack requirements.

6.2.2.2
HTTP standard headers
6.2.2.2.1
General

6.2.2.2.2
Content type

This subclause will indicate the encoding of HTTP requests/responses and the applicable MIME media type for the related Content-Type header.

6.2.2.3
HTTP custom headers
6.2.2.3.1
General

This clause will list, if applicable, the possible reused HTTP custom headers and the definition of new HTTP custom headers introduced by this specification.

6.2.3
Resources

6.2.3.1
Overview

[image: image10.emf]//{apiRoot}/n32-message/v1/forward

Figure 6.2.3.1-1: Resource URI structure

Table 6.2.3.1-1 provides an overview of the resources and applicable HTTP methods.

Table 7.3.3.1-1: Resources and methods overview

	Resource name
	Resource URI
	HTTP method
	Description

	
	
	
	

	
	
	
	

	
	
	
	

6.2.3.2
Resource: Forward
6.2.3.2.1
Resource Description

6.2.3.2.2
Resource Definition

6.2.3.2.3
Resource Standard Methods
6.2.3.2.3.1
<method 1> (e.g POST)
This subclause will specify the meaning of the method applied on the resource.

This method shall support the URI query parameters specified in table 7.3.3.2.3.1-1.

Table 6.2.3.2.3.1-1: URI query parameters supported by the <method 1> method on this resource
	Name
	Data type
	P
	Cardinality
	Description

	<name> or n/a
	<type> or <leave empty>
	<M, C or O>
	0..1 or 1 or 0..N or <leave empty>
	<only if applicable>

This method shall support the request data structures specified in table 6.2.3.2.3.1-2 and the response data structures and response codes specified in table 6.2.3.2.3.1-3.

Table 6.2.3.2.3.1-2: Data structures supported by the <method 1> Request Body on this resource

	Data type
	P
	Cardinality
	Description

	<type> or n/a
	<M, C or O>
	<1 (i.e. object)> or <0..N, 1..N, m..n (i.e. array)> or <leave empty>
	<only if applicable>

Table 6.2.3.2.3.1-3: Data structures supported by the <method 1> Response Body on this resource

	Data type
	P
	Cardinality
	Response

codes
	Description

	<type> or n/a
	<M, C or O>
	<1 (i.e. object)> or <0..N, 1..N, m..n (i.e. array)> or <leave empty>
	<list applicable codes with name from IETF RFC 7231, etc.>
	<Meaning of the success case>

or

<Meaning of the error case with additional statement regarding error handling>

6.2.4
Custom Operations without Associated Resources

6.2.4.1
Overview

This subclause will specify custom operations without any associated resource (i.e. RPC) supported by this API.

Table 6.2.4.1-1: Custom operations without associated resources

	Custom operation URI
	Mapped HTTP method
	Description

	
	
	

	
	
	

6.2.4.2
Operation: <operation 1>

Where <operation 1> is to be replaced by the name of the custom operation, e.g. Authentication_Information_Request.

It will describe, for each custom operation, the use and the URI of the operation, the HTTP method on which it is mapped, request and response data structures and response codes, and if applicable, HTTP headers specific to the operation.

6.2.4.2.1
Description

This sublause will describe the custom operation and what it is used for, and the custom operation's URI.

6.2.4.2.2
Operation Definition

This subclause will specify the custom operation and the HTTP method on which it is mapped.

This operation shall support the response data structures and response codes specified in tables 7.3.4.2.2-1 and 7.3.4.2.2-2.

Table 6.2.4.2.2-1: Data structures supported by the <e.g. POST> Request Body on this resource

	Data type
	P
	Cardinality
	Description

	<type> or n/a
	<M, C or O>
	<1 (i.e. object)> or <0..N, 1..N, m..n (i.e. array)> or <leave empty>
	<only if applicable>

Table 6.2.4.2.2-2: Data structures supported by the <e.g. POST> Response Body on this resource

	Data type
	P
	Cardinality
	Response

codes
	Description

	<type> or n/a
	<M, C or O>
	<1 (i.e. object)> or <0..N, 1..N, m..n (i.e. array)> or <leave empty>
	<list applicable codes with name from IETF RFC 7231, etc.>
	<Meaning of the success case>

or

<Meaning of the error case with additional statement regarding error handling>

6.2.4.3
Operation: < operation 2>

And so on if there are more than two custom operations supported by the service. Same structure as in subclause 6.2.4.2.

6.2.5
Data Model

6.2.5.1
General

This subclause specifies the application data model supported by the API.

Data types that may be common to multiple APIs (offered by the same or different NFs) should be specified in a new separate TS (similar approach as for TS 29.230 for Diameter AVPs). The data types for carrying the reformatted JSON message need to be defined here.
Table 6.3.5.1-1 specifies the data types defined for the N32 interface.

Table 6.2.5.1-1: N32 specific Data Types

	Data type
	Section defined
	Description

	
	
	

Table 6.1.5.1-2 specifies data types re-used by the N32 interface protocol from other specifications, including a reference to their respective specifications and when needed, a short description of their use within the Namf service based interface.

Table 6.2.5.1-2: N32 re-used Data Types

	Data type
	Reference
	Comments

	
	
	

6.2.5.2
Structured data types

This subclause will specify the structured data types.

6.2.5.2.1
Introduction

This subclause defines the structures to be used in resource representations.

Allowed structures are: array, object.

6.2.5.2.2
Type: <TypeName 1>

"Data type" may provide the name of a named data type (structured, simple or enum) that is defined elsewhere in this document, or in a referenced document. In case of a referenced type from another document, a reference to the defining document shall be included in the "Description" column.

"Presence" (P) defines whether the presence of the information element is Mandatory (M), Conditional (C) or Optional (O) within the data structure.

"Cardinality" defines the allowed number of occurrence. A cardinality of N greater than 1 indicates an array.

"Description" describes the meaning and use of the attribute.

Table 6.2.5.2.2-1: Definition of type <TypeName 1>

	Attribute name
	Data type
	P
	Cardinality
	Description

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

6.2.5.2.3
Type: <TypeName 2>

And so on if there are more types to specify.

6.2.5.3
Simple data types and enumerations

This subclause will define simple data types and enumerations that can be referenced from data structures defined in the previous subclauses.

6.2.5.3.1
Introduction

This subclause defines simple data types and enumerations that can be referenced from data structures defined in the previous subclauses.

6.2.5.3.2
Simple data types

The simple data types defined in table 6.1.5.3.2-1 shall be supported.

Table 6.2.5.3.2-1: Simple data types

	Type Name
	Type Definition
	Description

	
	
	

6.2.5.3.3
Enumeration: <EnumType1>

The enumeration <EnumType1> represents <something>. It shall comply with the provisions defined in table 6.2.5.3.3-1.

Table 7.3.5.3.3-1: Enumeration < EnumType1>

	Enumeration value
	Description

	
	

6.2.5.3.4
Enumeration: <EnumType2>

And so on if there are more enumerations to define.

6.2.6
Error Handling
This subclause will include a reference to the general error handling principles specified in TS 29.501, and further specify any general error handling aspect specific to the API, if any Error handling specific to each method (and resource) is specified in subclauses 7.3.3. and 7.3.4.

Annex <A> (normative):
OpenAPI Specification
Annexes are only to be used where appropriate:
Annex (informative):
<Informative annex title>

Annex <X> (informative):
Change history

	Change history

	Date
	Meeting
	TDoc
	CR
	Rev
	Cat
	Subject/Comment
	New version

	2018-07
	CT4#85bis
	C4-185523
	
	
	
	TS Skeleton, Scope, General Description and N32 Procedures. Implementation of C4-185531, C4-185353, C4-185352, C4-185469
	0.1.0

c-SEPP
p-SEPP
N32-c

C-SEPP
P-SEPP

1. POST <URI TBD> (SecNegotiateReqData)
2a. 200 OK (SecNegotiateRspData)
2b. 4xx/5xx (SecNegotiateErrData)

C-SEPP
P-SEPP

1. POST <URI TBD> (SecParamExchReqData)
2a. 200 OK (SecParamExchRspData)
2b. 4xx/5xx (SecParamExchErrData)

c-SEPP
p-SEPP
c-IPX
p-IPX
N32-f
N32-f
N32-f

_1591434206.vsd
//{apiRoot}/n32-init-handshake/v1

/capability

/param-exchange

_1591683910.vsd
//{apiRoot}/n32-message/v1

/forward

Application
HTTP/2
TCP
IP
L2
L1
TLS

