
3GPP TSG CT WG4 Meeting #85
C4-184316
Osaka, Japan, 21st – 25th May 2018
Source:
Orange
Title:
Pseudo-CR on API version number, TS version number and 3GPP Release
Spec:
3GPP TS 29.501v1.1.1
Agenda item:
6.2.1.4
Document for:
Decision

1. Reason for Change
The Semantic Versioning specification has been proposed to describe the API version, using the MAJOR.MINOR.PATCH pattern. When proposed, it was commented that the relation between:

· the 1st field (MAJOR) of the API version number, and

· the 1st field of the 3GPP specification version number ("x" in x.y.z) which indicates the given release which the 3GPP specification belongs to.

As a reminder, the 3GPP uses a system of parallel "Releases" which provide developers with a stable platform for the implementation of features at a given point and then allow for the addition of new functionality in subsequent Releases.

When the functionality of a given release is stable enough i.e. all new features to be included in the Release have been defined and all new or modified functionality required to implement those features has been incorporated into the specifications, the release is declared "frozen" as well as all the constituent specifications. At this stage, only CRs for essential corrections of errors shall be considered to be agreed for a given specification of this release. And then a new major version/release may be developed for inclusion of new features of the next release.

The 1st field (MAJOR) of the API version number is incremented when one or more backward incompatible changes to the API. The notion of "backward incompatible changes" echoes the common understanding of 3GPP frozen releases for which backward incompatible changes should not be considered to be incorporated in order to ensure the functional stability of the release.
Based on the above descriptions, it could be tempting to consider that a 3GPP release should correspond to a major version of the API e.g. v1 for Rel-15, v2 for Rel-16, etc. However, the APIs may be independent of the notion of 3GPP release. For instance, new feature can be added into a new release without any impact on existing APIs. Backward incompatible changes to an API can be with done without any impact on the functional scope of the given release i.e. changing a resource name format is considered as an API backward compatible change whereas this kind of change does not impact the corresponding associated feature/service operation.
Moreover, the 3GPP SBI API specifications describe "API services" provided by NF e.g. the Nudm_SubscriberDataManagement service that is used to retrieve the UE's subscription data relevant from the UDM. And for service consumer, a given service provided by a service consumer should be independent of any notion of 3GPP release. Whatever the release, the service consumers discover the services offered by service providers (e.g. via the NRF) and simply select the services that they are looking for.

A service consumer designed to support functionalities defined in release X has no reason to pick a service only supported by NF service consumer defined in in release X+1 (or X-1). Therefore, if a service producer exposes N versions of the same API, the service consumer will select a version it is designed to support.
Of course, new functionality can be added to an existing API reused in a new 3GPP release or existing API functionalities can be modified to correct errors inside a given release. However, the API version numbering pattern provided by the Semantic Versioning specification is used to identify different versions of the same API with a clear way to detect whether the new version captures backward compatible changes or not.

In order to allow:

· any modification of an API version in an early stage without taking care of possible backward incompatibility issues;
· the development of a new API version while the previous one is not stable yet when typically the release X+1 normative work has started right just before or after the official completion of the release X;
it is proposed to append the "PRE-RELEASE" field to the API version number. A pre-release version number indicates that the version is unstable and might not satisfy the intended compatibility requirements as denoted by its associated normal version. Two levels of pre-release versions are identified in the "PRE-RELEASE" field:
· "-alpha.x.y" will be used for an API version under development in a release not yet completed.

· "-beta.x.y" will be used for an API version not stable yet (or even under development for a late API specification) while the release is completed but not declared as "frozen".
For the PRE-RELEASE field, the dot separated identifiers are incremented as follow:

· The first version is set to "0.0" (e.g. "-alpha.0.0").
· For the next versions, either "y" is incremented (e.g. "-alpha.0.1") if the new version is backwards-compatible with the previous one, either "x" is incremented (e.g. "-alpha.1.0") if the changes are not backwards-compatible.
· The same principle applies for both "-alpha.x.y." and "-beta.x.y" pre-release type with the difference that backward incompatible changes should be considered as a last resort.

The "PRE-RELEASE" field is removed when the release/specification is declared as "frozen". Only the associated normal version number remains i.e. MAJOR.MINOR.PATCH. In a frozen release, no backward incompatible change can be agreed. Such a change must be captured in a new API version developed in the next release.
Pre-release versions ("-alpha.x.y" or "-beta.x.y") have a lower precedence than the associated normal version.
Pre-release versions of API under development (e.g. "1.0.0-alpha.1.0") have a lower precedence than the associated normal version.

Pre-release versions of API under development (e.g. "1.0.0-alpha.2.1") have a lower precedence than pre-release versions after completion of the release (e.g. "1.0.0-beta.1.0").
As a summary, for the same major, minor, and patch version:

MAJOR.MINOR.PATCH-alpha.x.y < MAJOR.MINOR.PATCH-beta.x.y < MAJOR.MINOR.PATCH
Precedence for two pre-release versions with the same major, minor, and patch value is determined by comparing numerically each dot separated identifier from left to right until a difference is found.

4. Proposal

It is proposed to agree the following changes to 3GPP TS <TS number and version>.
* * * First Change * * * *

4.3.1
Structure of API version numbers
4.3.1.1
API version number format
API version numbers shall consist of at least 3 numerical fields, following a MAJOR.MINOR.PATCH pattern as described in the Semantic Versioning Specification [17]. A pre-release version may be denoted by appending "-alpha.x.y" or "-beta.x.y" immediately following the patch version.
At the first publication of the 3GPP Technical Specification defining the API, the version number of the API shall be set to "1.0.0".

* * * Next Change * * * *

4.3.1.2
Rules for incrementing field values
The fields of an API version number shall be incremented according to the following rules:

-
1st Field (MAJOR):
This field shall be incremented when one or more backward incompatible changes to the API.

-
2nd Field (MINOR):
This field shall be incremented if one or more functionalities are added to the API in a backward compatible manner.
-
3rd Field (PATCH):
This field shall be incremented if one or more corrections are made to the OpenAPI [4] without requiring any change to the API.
-
4th Field (PRE-RELEASE):
This field indicates that the version is unstable and might not satisfy the intended compatibility requirements as denoted by its associated normal version. Two levels of pre-release versions are identified in the "PRE-RELEASE" field:
-
"-alpha.x.y" will be used for an API version under development in a release not yet completed. When the normative work on a new version of the API starts for a new release, the API version number shall be set to "x.0.0-alpha.0.0". "y" is incremented (e.g. "-alpha.0.1") if the new version is backward compatible with the previous one. "x" is incremented (e.g. "-alpha.1.0") if the changes are not backward compatible.
-
"-beta.x.y" will be used for an API version not stable yet (or even under development for a late API specification) while the release is completed but not declared as "frozen". At this stage, the first API version number shall be set to "x.0.0-beta.0.0. "y" is incremented (e.g. "-beta.0.1") if the new version is backward compatible with the previous one. "x" is incremented (e.g. "-beta.1.0") if the changes are not backward compatible. Such change should be considered as a last resort when the release is completed.
The "PRE-RELEASE" field is removed from the API version number when the release/specification is declared as "frozen". Only the associated normal version number remains i.e. "x.0.0". At this stage, the rules for incrementing the API version number are the ones given for the 1st Field (MAJOR), the 2nd Field (MINOR) and the 3rd Field (PATCH) described above.
In a frozen release, backward incompatible change shall not be agreed. Such a change shall be captured in a new API version developed in the following release. Therefore, after a release is declared as "frozen", the "MAJOR" field of the API version number is never incremented in the 3GPP Technical Specification documenting the use of this API for this release.
Rules for determining backward incompatible changes are provided in Annex B.

NOTE:
A mechanism to negotiate the usage of optional features is defined in subclause 6.6 of 3GPP TS 29.500 [2].

Pre-release versions ("-alpha.x.y" or "-beta.x.y") have a lower precedence than the associated normal version.

Pre-release versions of API under development (e.g. "1.0.0-alpha.1.0") have a lower precedence than the associated normal version.

Pre-release versions of API under development (e.g. "1.0.0-alpha.2.1") have a lower precedence than pre-release versions after completion of the release (e.g. "1.0.0-beta.1.0").

As a summary, for the same major, minor, and patch version:

x.0.0-alpha.x.y < x.0.0-beta.x.y < x.0.0
Precedence for two pre-release versions with the same major, minor, and patch value is determined by comparing numerically each dot separated identifier from left to right until a difference is found.
* * * Next Change * * * *

4.3.1.3
Visibility of the API version number fields
The API version shall be indicated in the resource URI of every API, as described in subclause 4.4.1.
The API version shall be indicated as the concatenation of the letter "v" and the 1st field of the API version number.

The other fields shall not be included in the resource URI.
NOTE:
Including these digits in the URI would force the NF service consumer to select a specific sub-version, at the risk of seeing the request rejected if the NF service provider does not support it, while the request could have been served by ignoring unknown elements.

The full API version number (i.e., containing all the fields) shall be visible in the OpenAPI specifications, in the "version" subfield of the "info" field, as illustrated below (in YAML).

openapi: 3.0.0

info:

 title: Nudm_SubscriberDataManagement Service API

 description: The Nudm_SubscriberDataManagement Service is used by Consumer NFs to retrieve from the UDM UE's subscription data relevant to the consumer NF and to be notfieid of any change on these data.
 version: 1.0.0-beta.2.1
 license:

 name: [TBD]

 url: https://[TBD].txt

servers:

 - url: https://{apiRoot}/nudm-sdm/v1
…

* * * Next Change * * * *

4.3.1.4
Relation to the Technical Specification version number
There is no one-to-one mapping between an API version number and the version number of the 3GPP Technical Specification defining this API.

A 3GPP Technical Specification specifies one or more APIs, which may have different versions.

A change in the 3rd field of a 3GPP TS version number (i.e. an editorial change) should not lead to a change in the version number of the APIs specified in the 3GPP TS.

A change in the 2nd field of the 3GPP TS version number is likely to lead to:
a change in the pre-release version number of the APIs specified in the 3GPP TS under development
a change in the minor version number of the APIs specified in the 3GPP TS when considered as "frozen".

For example, if version 2.4.1 of a 3GPP TS contains version 1.1.1 of API A, B and C, version 3.1.1 of this 3GPP TS can contain version 1.2.1 of API A (if all changes made are backward compatible), version 2.1.1 of API B (if some changes are no backward compatible) and version 1.1.1 of API C (if no changes were made).

Each OpenAPI specification shall provide in an "externalDoc" field the reference to only one 3GPP TS describing the API, including the version number, as illustrated below. The 3GPP TS version is the one in which the API version number has been incremented.
openapi: 3.0.0

info:

 title: Nudm_SubscriberDataManagement Service API

 description: The Nudm_SubscriberDataManagement Service is used by Consumer NFs to retrieve from the UDM UE's subscription data relevant to the consumer NF and to be notfieid of any change on these data.
 version: 1.0.0-beta.2.1
 license:

 name: [TBD]

 url: https://[TBD].txt

externalDocs

 description: 3GPP TS Unified Data Management Services version 0.5.0

 url: http://www.3gpp.org/ftp/Specs/archive/29_series/29.503/29503-050.zip

servers:

 - url: https://{apiRoot}/nudm-sdm/v1
…

* * * End of Changes * * * *

