
3GPP TSG CT4 Meeting #84
C4-1834300
KunMing, P.R. China; 16th – 20th April 2018
C4-183212
Source:
Huawei
Title:
Pseudo-CR on OpenAPI 3.0.0 specification, in YAML format
Spec:
3GPP TS 29.571
Agenda item:
6.2.1.15
Document for:
Decision

1. Introduction
<Introduction part (optional)>

2. Reason for Change
The annex of 29.571 is missing the YAML format.
3. Conclusions

<Conclusion part (optional)>

4. Proposal

It is proposed to agree the following changes to 3GPP TS 29.571 0.5.0.
* * * First Change * * * *

A.1
General

This Annex specifies the formal definition of common data types. It consists of an OpenAPI 3.0.0 specification, in YAML format.

A.2
Data related to Common Data Types
openapi: 3.0.0

info:

 version: 'v1'

 title: 'Common Data Types'

 description: 'Common Data Types'

paths: {}

#

components:

 schemas:

#

A.2.1 Common Data Types for Generic usage definitiones

#

COMMON SIMPLE DATA TYPES

#

 Binary:

 format: binary

 type: string

 #String with format "binary" as defined in OpenAPI Specification [3]

 Bytes:

 format: byte

 type: string

 #String with format "byte" as defined in OpenAPI Specification [3], i.e, base64-encoded characters,

 Date:

 format: date

 type: string

 #String with format "date" as defined in OpenAPI Specification [3]

 DateTime:

 format: date-time

 type: string

 #String with format "date-time" as defined in OpenAPI Specification [3]

 Double:

 format: double

 type: number

 #Number with format "double" as defined in OpenAPI Specification [3]

 DurationSec:

 format: DurationSec

 type: integer

 #Unsigned integer identifying a period of time in units of seconds. In an OpenAPI Specification [3] schema, the format shall be designated as "DurationSec".

 Float:

 format: float

 type: number

 #Number with format "float" as defined in OpenAPI Specification [3]

 Int32:

 format: int32

 type: integer

 #Integer with format "int32" as defined in OpenAPI Specification [3]

 Int64:

 type: integer

 format: int64

 #Integer with format "int64" as defined in OpenAPI Specification [3]

 Ipv4Addr:

 format: Ipv4Addr

 type: string

 #String identifying a IPv4 address formatted in the "dotted decimal" notation as defined in in IETF RFC 1166 [4]. In an OpenAPI Specification [3] schema, the format shall be designated as "Ipv4Addr".

 Ipv6Addr:

 format: Ipv6Addr

 type: string

 #String identifying a IPv6 address formatted according to clause 4 of IETF RFC 5952 [5]. The mixed IPv4 IPv6 notation according to clause 5 of IETF RFC 5952 [5] shall not be used. In an OpenAPI Specification [3] schema, the format shall be designated as "Ipv6Addr".

 Ipv6Prefix:

 format: Ipv6Prefix

 type: string

 #String identifying a IPv6 address prefix formatted according to clause 4 of IETF RFC 5952 [5]. In an OpenAPI Specification [3] schema, the format shall be designated as "Ipv6Prefix".

 SupportedFeatures:

 format: SupportedFeatures

 type: string

 #A string used to indicate the features supported by an API that is used as defined in subclause 6.6 in 3GPP TS 29.501 [2]. The string shall contain a bitmask indicating supported features in hexadecimal representation Each character in the string shall take a value of "0" to "9" or "A" to "F" and shall represent the support of 4 features as described in table 5.2.2-3. The most significant character representing the highest-numbered features shall appear first in the string, and the character representing features 1 to 4 shall appear last in the string. The list of features and their numbering (starting with 1) are defined separately for each API. If the string contains a lower number of characters than there are defined features for an API, all features that would be represented by characters that are not present in the string are not supported. In an OpenAPI Specification [3] schema, the format shall be designated as "SupportedFeatures".

 Uinteger:

 format: Uinteger

 type: integer

 #Unsigned Integer, i.e. only value 0 and integers above 0 are permissible. In an OpenAPI Specification [3] schema, the format shall be designated as "Uinteger".

 Uint32:

 format: Uint32

 type: integer

 #Unsigned 32-bit integers, i.e. only value 0 and 32-bit integers above 0 are permissible. In an OpenAPI Specification [3] schema, the format shall be designated as "Uint32".

 Uint64:

 format: Uint64

 type: integer

 #Unsigned 64-bit integers, i.e. only value 0 and 64-bit integers above 0 are permissible. In an OpenAPI Specification [3] schema, the format shall be designated as "Uint64".

 Uri:

 format: Uri

 type: string

 #String providing an URI formatted according to IETF RFC 3986 [6]. In an OpenAPI Specification [3] schema, the format shall be designated as "Uri".

 TimeZone:

 format: TimeZone

 type: string

 #String with format "<time-numoffset>" optionally appended by "<daylightSavingTime>", where - <time-numoffset> shall represent the time zone adjusted for daylight saving time and be encoded as time-numoffset as defined in subclause 5.6 of IETF RFC 3339 [10]; - <daylightSavingTime> shall represent the adjustment that has been made and be encoded as "+1" or "+2" for a +1 or +2 hours adjustment. In an OpenAPI Specification [3] schema, the format shall be designated as "TimeZone". Example "-08 00+1" (for 8 hours behind UTC, +1 hour adjustment for Daylight Saving Time).

#

COMMON STRUCTURED DATA TYPES

#

 ProblemDetails:

 type: object

 properties:

 type:

 $ref: '#/components/schemas/Uri'

 #A URI reference according to IETF RFC 3986 [6] that identifies the problem type.

 title:

 type: string

 #A short, human-readable summary of the problem type. It should not change from occurrence to occurrence of the problem.

 status:

 type: integer

 #The HTTP status code for this occurrence of the problem.

 detail:

 type: string

 #A human-readable explanation specific to this occurrence of the problem.

 instance:

 $ref: '#/components/schemas/Uri'

 #A URI reference that identifies the specific occurrence of the problem.

 required:

 - type

 link:

 type: object

 properties:

 href:

 $ref: '#/components/schemas/Uri'

 #It contains the URI of the linked resource.Where <functional area 1> is to be replaced by the name of the functional area (e.g. Subscription, Identification and Numbering).

#

A.2.2 Data related to Data Types related to Subscription, Identification and Numbering

#

SIMPLE DATA TYPES

#

 Dnn:

 type: string

 format: Dnn

 #String representing a Data Network Name formatted FFS. In an OpenAPI Specification [3] schema, the format shall be designated as "Dnn".

 Gpsi:

 format: Gpsi

 type: string

 #String identifying a Gpsi shall contain either an External Id or an MSISDN. It shall be formatted as follows for -External Identifier "extid-<extid>, <extid> shall be formatted according to subclause 19.7.2 of 3GPP TS 23.003 [7] that describes an External Identifier. -MSISDN "msisdn-<msisdn>, <msisdn> shall be formatted according to subclause 3.3 of 3GPP TS 23.003 [7] that describes an MSISDN. In an OpenAPI Specification [3] schema, the format shall be designated as "Gpsi".

 GroupId:

 format: GroupIdi

 type: string

 #String identifying a group of devices formatted FFS. In an OpenAPI Specification [3] schema, the format shall be designated as "GroupIdi".

 NetworkId:

 format: NetworkId

 type: string

 #String providing a network identity formatted FFS. In an OpenAPI Specification [3] schema, the format shall be designated as "NetworkId".

 Pei:

 format: Pei

 type: string

 #String Identifying a Permanent Equipment Identifier formatted FFS. In an OpenAPI Specification [3] schema, the format shall be designated as "Pei".

 Supi:

 format: Supi

 type: string

 #String identifying a Supi shall contain either an IMSI or an NAI. It shall be formatted as follows for -IMSI "imsi-<imsi>, <imsi> shall be formatted according to subclause 2.2 of 3GPP TS 23.003 [7] that describes an IMSI. -NAI "nai-<nai>, <nai> shall be formatted according to subclause 14.3 of 3GPP TS 23.003 [7] that describes an NAI. To enable that the value is used as part of a URI, the string shall only contain characters allowed according to the "lower-with-hyphen" naming convention defined in 3GPP TS 29.501 [2]. In an OpenAPI Specification [3] schema, the format shall be designated as "Supi".

 NfInstanceId:

 format: NfInstanceId

 type: string

 #String uniquely identifying a NF instance, formatted as follows FFS. In an OpenAPI Specification [3] schema, the format shall be designated as "NfInstanceId".

#

Structured DATA TYPES

#

none

A.2.3 Data related to Data Types related to 5G Network

#

SIMPLE DATA TYPES

#

 ApplicationId:

 format: ApplicationId

 type: string

 #String providing an application identifier and formatted FFS. In an OpenAPI Specification [3] schema, the format shall be designated as "ApplicationId".

 PduSessionId:

 format: PduSessionIdentifier

 type: integer

 #Unsigned integer identifying a PDU session, within the range 0 to 255, as specified in subclause 11.2.3.1.5, bits 5 to 8, of 3GPP TS 24.007 [13]. In an OpenAPI Specification [3] schema, the format shall be designated as "PduSessionIdentifier".

 Mcc:

 format: Mcc

 type: string

 #Mobile Country Code part of the PLMN, comprising 3 digits, as defined in 3GPP TS 38.413 [11]. In an OpenAPI Specification [3] schema, the format shall be designated as "Mcc".

 Mnc:

 format: Mnc

 type: string

 #Mobile Network Code part of the PLMN, comprising 2 or 3 digits, as defined in 3GPP TS 38.413 [11]. In an OpenAPI Specification [3] schema, the format shall be designated as "Mnc".

 Tac:

 format: Tac

 type: string

 #2 or 3-octet string identifying a tracking area code as specified in subclause 9.3.3.10 of 3GPP TS 38.413 [11], in hexadecimal representation. Each character in the string shall take a value of "0" to "9" or "A" to "F" and shall represent 4 bits. The most significant character representing the 4 most significant bits of the TAC shall appear first in the string, and the character representing the 4 least significant bit of the TAC shall appear last in the string. In an OpenAPI Specification [3] schema, the format shall be designated as "Tac". Examples A legacy TAC 0x4305 shall be encoded as "4305". An extended TAC 0x63F84B shall be encoded as "63F84B"

 EutraCellId:

 format: EutraCellId

 type: string

 #28-bit string identifying an E-UTRA Cell Id as specified in subclause 9.3.1.9 of 3GPP TS 38.413 [11], in hexadecimal representation. Each character in the string shall take a value of "0" to "9" or "A" to "F" and shall represent 4 bits. The most significant character representing the 4 most significant bits of the Cell Id shall appear first in the string, and the character representing the 4 least significant bit of the Cell Id shall appear last in the string. In an OpenAPI Specification [3] schema, the format shall be designated as "EutraCellId". Example An E-UTRA Cell Id 0x5BD6007 shall be encoded as "5BD6007".

 NrCellId:

 format: NrCellId

 type: string

 #36-bit string identifying an NR Cell Id as specified in subclause 9.3.1.7 of 3GPP TS 38.413 [11], in hexadecimal representation. Each character in the string shall take a value of "0" to "9" or "A" to "F" and shall represent 4 bits. The most significant character representing the 4 most significant bits of the Cell Id shall appear first in the string, and the character representing the 4 least significant bit of the Cell Id shall appear last in the string. In an OpenAPI Specification [3] schema, the format shall be designated as "NrCellId". Example An NR Cell Id 0x225BD6007 shall be encoded as "225BD6007".

#

Enumerations

#

 AccessType:

 type: string

 enum:

 - 3GPP_ACCESS

 - NON_3GPP_ACCESS

 # Possible values are

 # - 3GPP_ACCESS: 3GPP access

 # - NON_3GPP_ACCESS: Non-3GPP access

 RatType:

 type: string

 enum:

 - NR

 - EUTRA

 - WLAN

 - VIRTUAL

 #Possible values are

 # - NR: New Radio

 # - EUTRA: (WB) Evolved Universal Terrestrial Radio Access

 # - WLAN: Wireless LAN

 # - VIRTUAL: Virtual (Virtual shall be used if the N3IWF does not know the access technology used for an untrusted non-3GPP access)

 PduSessionType:

 type: string

 enum:

 - IP

 - IPV4

 - IPV6

 - UNSTRUCT

 - ETHERNET

 # Possible values are

 # - IP: IP (a UE that is IPv6 and IPv4 capable sets the PDU session type to IP, see subclause 6.2.4.2 of 3GPP TS 24.501 [12])

 # - IPV4: IPv4

 # - IPV6: IPv6

 # - UNSTRUCT: Unstructured

 # - ETHERNET: Ethernet

#

Structured Data Types

#

 Snssai:

 type: object

 properties:

 sst:

 $ref: '#/components/schemas/Uinteger'

 # Unsigned integer, within the range 0 to 255, representing the Slice/Service Type. It indicates the expected Network Slice behaviour in terms of features and services. Values 0 to 127 correspond to the standardized SST range. Values 128 to 255 correspond to the Operator-specific range. See subclause 28.4.2 of 3GPP TS 23.003 [7]. Standardized values are defined in subclause 5.15.2.2 of 3GPP TS 23.501 [8].

 sd:

 type: string

 # 3-octet string, representing the Slice Differentiator, in hexadecimal representation. Each character in the string shall take a value of "0" to "9" or "A" to "F" and shall represent 4 bits. The most significant character representing the 4 most significant bits of the SD shall appear first in the string, and the character representing the 4 least significant bit of the SD shall appear last in the string. This is an optional parameter that complements the Slice/Service type(s) to allow to differentiateamongst multiple Network Slices of the same Slice/Service type. Examples A SD 0xD143A5 shall be encoded as "D143A5".

 required:

 - sst

 PlmnId:

 type: object

 properties:

 mcc:

 $ref: '#/components/schemas/Mcc'

 # Mobile Country Code

 mnc:

 $ref: '#/components/schemas/Mnc'

 # Mobile Network Code

 required:

 - mcc

 - mnc

 Tai:

 type: object

 properties:

 plmnId:

 $ref: '#/components/schemas/PlmnId'

 # PLMN Identity

 tac:

 $ref: '#/components/schemas/Tac'

 # Tracking Area Code

 required:

 - plmnId

 - tac

 Ecgi:

 type: object

 properties:

 plmnId:

 $ref: '#/components/schemas/PlmnId'

 # PLMN Identity

 eutraCellId:

 $ref: '#/components/schemas/EutraCellId'

 # E-UTRA Cell Identity

 required:

 - plmnId

 - eutraCellId

 Ncgi:

 type: object

 properties:

 plmnId:

 $ref: '#/components/schemas/PlmnId'

 # PLMN Identity

 nrCellId:

 $ref: '#/components/schemas/NrCellId'

 # NR Cell Identity

 required:

 - plmnId

 - nrCellId

 UserLocation:

 type: object

 properties:

 eutraLocation:

 $ref: '#/components/schemas/EutraLocation'

 # E-UTRA user location (see NOTE).

 nrLocation:

 $ref: '#/components/schemas/NrLocation'

 # NR user location (see NOTE).

 n3gaLocation:

 $ref: '#/components/schemas/N3gaLocation'

 # Non-3GPP acces user location (see NOTE).

 # Note: At least one of eutraLocation, nrLocation and n3gaLocation shall be present. Several of them may be present.

 EutraLocation:

 type: object

 properties:

 tai:

 $ref: '#/components/schemas/Tai'

 # Tracking Area Identity

 ecgi:

 $ref: '#/components/schemas/Ecgi'

 # E-UTRA Cell Identity

 required:

 - tai

 - ecgi

 NrLocation:

 type: object

 properties:

 tai:

 $ref: '#/components/schemas/Tai'

 # Tracking Area Identity

 ncgi:

 $ref: '#/components/schemas/Ncgi'

 # NR Cell Identity

 required:

 - tai

 - ncgi

 N3gaLocation:

 type: object

 properties:

 ueIpv4Addr:

 $ref: '#/components/schemas/Ipv4Addr'

 # UE local IPv4 address (used to reach the N3IWF). The ueIPv4Addr or the ueIPv6Addr shall be present.

 ueIpv6Addr:

 $ref: '#/components/schemas/Ipv6Addr'

 # UE local IPv6 address (used to reach the N3IWF). The ueIPv4Addr or the ueIPv6Addr shall be present.

 portNumber:

 $ref: '#/components/schemas/Uinteger'

 # UDP or TCP source port number. It shall be present if NAT is detected.

#

A.2.4 Data related to Data Types related to 5G QoS

#

#

SIMPLE DATA TYPES

#

#

Enumerations

#

#

Structured Data Types

#* * * End of Changes * * * *

