3GPP TS 29.501 V0.2.0 (2017-10)
Technical Specification

3rd Generation Partnership Project;

Technical Specification Group Core Network and Terminals;

5G System;

Principles and Guidelines for Services Definition;
(Release 15)
 [image: image1.jpg]s

[image: image2.png]=

A GLOBAL INITIATIVE

The present document has been developed within the 3rd Generation Partnership Project (3GPP TM) and may be further elaborated for the purposes of 3GPP..
The present document has not been subject to any approval process by the 3GPP Organizational Partners and shall not be implemented.
This Specification is provided for future development work within 3GPP only. The Organizational Partners accept no liability for any use of this Specification.
Specifications and Reports for implementation of the 3GPP TM system should be obtained via the 3GPP Organizational Partners' Publications Offices.

Keywords

<keyword[, keyword, …]>

MCC selects keywords from stock list.

3GPP

Postal address

3GPP support office address

650 Route des Lucioles - Sophia Antipolis

Valbonne - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Internet

http://www.3gpp.org

Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© 2017, 3GPP Organizational Partners (ARIB, ATIS, CCSA, ETSI, TSDSI, TTA, TTC).

All rights reserved.
UMTS™ is a Trade Mark of ETSI registered for the benefit of its members

3GPP™ is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners
LTE™ is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners
GSM® and the GSM logo are registered and owned by the GSM Association

Contents

5Foreword

Introduction
5
1
Scope
6
2
References
6
3
Definitions, symbols and abbreviations
6
3.1
Definitions
6
3.2
Symbols
7
3.3
Abbreviations
7
4
Design Principles for 5GC SBI APIs
7
4.1
General Principles
7
4.2
API Design Style and REST Implementation Levels
8
4.3
Version Control
8
4.4
URI Structure
8
4.4.1
Resources
8
4.4.2
Custom operations
9
4.5
Resource Representation and Content Format Negotiation
9
4.5.1 Resource Representation
9
4.5.2 Content Format Negotiation
9
4.6
Use of HTTP Methods
9
4.6.1
Use of Request/Response Communication
9
4.6.1.1
CRUD
9
4.6.1.1.1
Creating a Resource
9
4.6.1.1.1.1
Creating a Resource using POST
9
4.6.1.1.1.2
Creating a Resource using PUT
10
4.6.1.1.2
Reading a Resource
10
4.6.1.1.2.1
Reading a Single Resource
10
4.6.1.1.2.2
Querying a Collection of Resources
11
4.6.1.1.3
Updating a Resource
11
4.6.1.1.3.1
Usage of HTTP PUT
11
4.6.1.1.3.2
Usage of HTTP PATCH
12
4.6.1.1.4
Deleting a Resource
12
4.6.1.2
Custom Operations
13
4.6.1.3
Use of Asynchronous Operations
13
4.6.2
Use of Subscribe/Notify Communication
13
4.6.2.1
General
13
4.6.2.2
Management of Subscriptions
13
4.6.2.3
Notifications
14
4.7
HATEOAS
15
4.8
Error Responses
15
5
Documenting 5GC SBI APIs
15
5.1
Naming Conventions
15
5.1.1
Case Conventions
15
5.1.2
API Naming Conventions
16
5.1.3
Conventions for URI Parts
16
5.1.3.1
Introduction
16
5.1.3.2
URI Path Segment Naming Conventions
17
5.1.3.3
URI Query Naming Conventions
17
5.1.4
Conventions for Names in Data Structures
18
5.2
API Definition
18
5.2.1
Resource Structure
18
5.2.2
Resources and HTTP Methods
18
5.2.3
Representing RPC as Custom Operations on Resources
18
5.2.4
Data Models
18
5.3
Open API specification files
18
Annex A (informative): TS Skeleton Template
18
Annex B (informative): Backward Incompatible Changes
19
Annex <X> (informative): Change history
19

Foreword

This Technical Specification has been produced by the 3rd Generation Partnership Project (3GPP).

The contents of the present document are subject to continuing work within the TSG and may change following formal TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an identifying change of release date and an increase in version number as follows:

Version x.y.z

where:

x
the first digit:

1
presented to TSG for information;

2
presented to TSG for approval;

3
or greater indicates TSG approved document under change control.

y
the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections, updates, etc.

z
the third digit is incremented when editorial only changes have been incorporated in the document.

Introduction

This clause is optional. If it exists, it is always the second unnumbered clause.

1
Scope

This clause shall start on a new page.

The present document defines design principles and documentation guidelines for 5GC SBI APIs. These principles and guidelines should be followed when drafting the 5G System SBI Stage 3 specifications.
2
References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

-
References are either specific (identified by date of publication, edition number, version number, etc.) or non‑specific.

-
For a specific reference, subsequent revisions do not apply.

-
For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same Release as the present document.

[1]
3GPP TR 21.905: "Vocabulary for 3GPP Specifications".

[2]
3GPP TS 29.500: "5G System; Technical Realization of Service Based Architecture; Stage 3".

[3]
IETF RFC 7159: "The JavaScript Object Notation (JSON) Data Interchange Format".

[4]
OpenAPI: "OpenAPI 3.0.0 Specification", https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.0.0.md.

[5]
3GPP TS 29.tbd: "TBD".

[6]
IETF RFC 7231: "Hypertext Transfer Protocol (HTTP/1.1): Semantics and Content"
[7]
IETF RFC 7396: "JSON Merge Patch".
[8]
IETF RFC 6902: "JavaScript Object Notation (JSON) Patch".

[9]
IETF RFC 3986: "Uniform Resource Identifier (URI): Generic Syntax"
[10]
IETF RFC 5789: "PATCH Method for HTTP"
3
Definitions, symbols and abbreviations
Delete from the above heading those words which are not applicable.

Clause numbering depends on applicability and should be renumbered accordingly.

3.1
Definitions

For the purposes of the present document, the terms and definitions given in 3GPP TR 21.905 [1] and the following apply. A term defined in the present document takes precedence over the definition of the same term, if any, in 3GPP TR 21.905 [1].

Definition format (Normal)

<defined term>: <definition>.

example: text used to clarify abstract rules by applying them literally.

3.2
Symbols

For the purposes of the present document, the following symbols apply:

Symbol format (EW)

<symbol>
<Explanation>

3.3
Abbreviations

For the purposes of the present document, the abbreviations given in 3GPP TR 21.905 [1] and the following apply. An abbreviation defined in the present document takes precedence over the definition of the same abbreviation, if any, in 3GPP TR 21.905 [1].

5GC
5G Core Network
HATEOAS
Hypermedia as the Engine of Application State
SBI
Service Based Interface
4
Design Principles for 5GC SBI APIs
4.1
General Principles
Each 5GC SBI API specification should include the following information for each specified service:

-
Purpose of the API

-
URIs of resources

-
Supported HTTP methods for a given resource

-
Supported representations (e.g. JSON, see IETF RFC 7159 [3])

-
Request body schema(s) (where applicable)

-
Response body schema(s) (where applicable)

-
Supported response status codes

For each specified service a subclause to a normative Annex should be provided containing the OpenAPI definitions according to OpenAPI Specification [4] for the service. The specifications should state that content of this normative annex takes precedence when being discrepant to other parts of the specification.

The TS Skeleton Template as provided in Annex A should be used as a starting point when drafting 5GC SBI API specifications.

Common procedures, HTTP extensions and error handling applicable to several 5GC SBI API specifications should be defined in 3GPP TS 29.500 [2] and should be referenced from individual 5GC SBI API specifications.

Common data types applicable to several 5GC SBI API specifications should be defined in 3GPP TS 29.tbd [5] and should be referenced from individual 5GC SBI API specifications.

Editor's Note:
Whether or not a given data type is or should be common is ffs.

4.2
API Design Style and REST Implementation Levels
5GC SBI API specifications should apply a protocol design framework as follows:

-
REST-style service operations should implement the Level 2 of the Richardson maturity model, with standard HTTP methods, whenever it is a good match for the style of interaction to model, e.g. service operations that can naturally map to one of the standard methods (CRUD operations); this should be the preferred modelling attempt;

-
service operations may use custom API operations (RPC-style interaction), when it is seen a better fit for the style of interaction to model, e.g. non-CRUD service operations.

-
it is possible to mix REST-style operations and RPC-style operations in the same API

Note:
Support of the Level 3 (HATEOAS) of the Richardson maturity model in the 5G Service-Based Architecture is not required.

Editor's Note:
More detailed description on standard vs. custom methods may be needed.

Editor's Note:
Support of the Level 3 (HATEOAS) can be further discussed.
4.3
Version Control
In the present release all 5GC SBI APIs shall be at version v1.

Editor's Note:
It is ffs how to phrase a release independent requirement on the version, so that in future releases the text need not be changed.
4.4
URI Structure
4.4.1
Resources

Resources represent objects that are modified by standard HTTP operations using the CRUD paradigm, and that can have additional custom operations attached (see clause 4.4.2). Resources are either individual resources, or collection resources that can contain child resources of the same type.

NOTE:
Even though a collection resources typically contain child resources, it is allowed that a particular collection resource does not contain any child resource at a particular point in time ("empty collection").

Every resource is uniquely identified by a URI. In the 5GC SBI APIs the resource URI structure shall be specified as follows:

{apiRoot}/{apiName}/{apiVersion}/{apiSpecificResourceUriPart}

"apiRoot" is a concatenation of the following parts:
· scheme ("http://" or "https://"

Editor's note: The choice of scheme depends on SA3 requirements.
· authority (host and optional port) as defined in IETF RFC 3986 [9]

· an optional deployment-specific string that starts with a "/" character.
Editor's Note:
The use of an optional deployment-specific string is ffs.
"apiName" defines the name of the API.

"apiVersion" represents the version of the API. See also subclause 4.3.

While "apiRoot", "apiName" and "apiVersion" together define the base URI of the API, each "apiSpecificResourceUriPart" defines a resource URI of the API relative to the base URI.
With every HTTP method, exactly one resource URI is passed in the request to address a resource.
4.4.2
Custom operations

In addition to the standard operations, a resource can have further custom operations which are represented by specific URIs. The URI that represents a custom operation which is associated with a resource shall have the following structure:

{apiRoot}/{apiName}/{apiVersion}/{apiSpecificResourceUriPart}/rpc/{custOpName}
Custom operations can also be associated with the service instead of a resource. The URI that represents a custom operation which is not associated with a resource shall have the following structure:

{apiRoot}/{apiName}/{apiVersion}/rpc/{custOpName}
In the above URI structures, "apiRoot", "apiName", "apiVersion" and "apiSpecificResourceUriPart" are as defined in clause 4.4.1 and "custOpName" represents the name of the custom operation as defined in clause 5.1.3.2.
4.5
Resource Representation and Content Format Negotiation

4.5.1 Resource Representation

A resource representation is a serialization of the resource state in a particular content format. It's included in the data frame of an HTTP/2 request or response. Representation header fields provide metadata about the representation. When a message includes a data frame, the representation data enclosed in the data frame. HTTP/2 reuses the definition of Representation header as HTTP 1.1 in IETF RFC 7231 [6]. Content-type field in HTTP/2 header performs as representation header fields and describes the representation data that would have been enclosed in the data frame, e.g. if content-type is application/json, resource representation in data frame is serialized in JSON format.
Server supports the content format of the representation received in the data frame of the request and returns the "200 OK" response code.
4.5.2 Content Format Negotiation
IETF RFC 7231 [6] provides a mechanism to negotiate the content format of a representation.
In HTTP/2 requests and responses, the "Content-Type" HTTP/2 header field is used to signal the format of the actual representation included in the data frame. If the format of the representation in an HTTP/2 request is not supported by the server, it responds with the "415 Unsupported Media Type" response code.

For GET method, the "Accept" HTTP header of the HTTP/2 request signals the content formats that a client supports. If the server cannot provide any of the accepted formats, it returns the "406 Not Acceptable" response code.
4.6
Use of HTTP Methods

This clause provides guidelines on use of HTTP Methods.

4.6.1
Use of Request/Response Communication

4.6.1.1
CRUD
4.6.1.1.1
Creating a Resource

4.6.1.1.1.1
Creating a Resource using POST
Procedures that allow an NF service consumer to create a new child resource at the NF service producer shall be specified to use the HTTP POST method (see IETF RFC 7231 [6]).

Figure 4.6.1.1.1.1-1 illustrates creating a resource using POST.

[image: image3.emf]NF service

consumer

NF service

producer

1. POST …/parent_resource (ResourceRepresentation)

2. 201 Created (ResourceRepresentation)

Figure 4.6.1.1.1.1-1: Creating a resource using POST

1. The parent resource of which the new resource is to be created as a child is identified by the request URI. The payload body of the POST request shall contain a representation of the resource to be created.

2. On success, "201 Created" shall be returned, the payload body of the POST response shall contain the representation of the created resource, and the "Location" header shall contain the URI of the created resource.

Note:
The resource representation in the body of the POST response may be a superset of the resource representation sent in the POST request as the server may add server-generated attributes during the resource creation process.

On failure, the appropriate HTTP status code indicating the error shall be returned and appropriate additional error information should be returned in the POST response body (see subclause 4.8).

4.6.1.1.1.2
Creating a Resource using PUT
4.6.1.1.2
Reading a Resource

4.6.1.1.2.1
Reading a Single Resource

Procedures that allow a service consumer NF (client) to read information from the server shall be specified to use the HTTP GET method (see IETF RFC 7231 [6]) to obtain the current representation of a resource.

Figure 4.6.1.1.2-1 illustrates reading a resource.

[image: image4.emf]NF service

consumer

NF service

producer

1. GET …/resource?query_parameter=value ()

2. 200 OK (ResourceRepresentation)

Figure 4.6.1.1.2.1-1: Reading a resource

1. The resource of which a representation is to be obtained is identified by the request URI. Query parameters may be used to control the content of the result.

Editor's Note:
Exact limits for number and length of query parameters are ffs.

Editor's Note:
Alternatives to the GET method for cases where the limits for number and length of query parameters are exceeded are ffs.

The payload body of the GET request shall be empty.

2. On success, "200 OK" shall be returned and the payload body of the GET response shall contain the obtained resource representation.

On failure, the appropriate HTTP status code indicating the error shall be returned and appropriate additional error information should be returned in the GET response body (see subclause 4.8).
4.6.1.1.2.2
Querying a Collection of Resources

Procedures that allow a service consumer NF (client) to querying a collection for resources from the server shall be specified to use the query parameters within HTTP GET method to obtain the certain resources. The syntax of the query part is specified by IETF RFC 3986 [9].

The query component contains non-hierarchical data that, along with data in the path component, to filter the resources identified within the scope of the URI's scheme to a subset of the resources matching the query parameters. The query component is indicated by the first question mark ("?") character and terminated by a number sign ("#") character or by the end of the URI.

When a server receives a request with query component, it may parse the query string in order to identify filters. The first question mark is used to be a separator and is not part of the query string. And query string is composed of a series of "key=value" pairs.

The exact structure of the query string is not standardised.
Editor's note: Whether need and how to define complex syntax rules like operation priority and so on is FFS.

[image: image5.emf]client server

1. Get .../resource?query_parameters

2. 200 OK (ResourceRepresentation)

Figure 4.6.1.1.2.2-1 illustrates querying a collection of resources by using query parameters.
Step1. Client sends get request with query parameters to server.

Step2. On success, server would return a collection of resources that includes only those entries filtered by the query_parameters.
Editor's note: When querying a large collection of resources, more details on the retrieval of resources is FFS, e.g. if no query parameters are included in the request message, return a partial representation of the resources with links for further queries.
4.6.1.1.3
Updating a Resource

4.6.1.1.3.1
Usage of HTTP PUT

Procedures that allow a service consumer NF (client) to update information stored at the server by means of a complete replacement shall be specified to use the HTTP PUT method to replace the current representation of a resource with a new representation.

Figure 4.6.1.1.3.1-1 illustrates updating a resource using HTTP PUT.

[image: image6.emf]NF service

consumer

NF service

producer

1. PUT …/resource (ResourceRepresentation)

2. 204 No Content ()

or 200 OK

Figure 4.6.1.1.3.1-1: Updating a Resource using HTTP PUT

1. The resource that is to be updated is identified by the request URI. The payload body of the PUT request shall contain the new representation of the resource.

2. On success, "204 No Content" or "200 OK" shall be returned.

On failure, the appropriate HTTP status code indicating the error shall be returned and appropriate additional error information should be returned in the PUT response body (see subclause 4.8).
4.6.1.1.3.2
Usage of HTTP PATCH

Procedures that allow a service consumer NF (client) to update information stored at the server by means of a partial replacement shall be specified to use the HTTP PATCH method (see IETF RFC 5789 [10]) to modify the current representation of a resource according to given modification instructions.

Figure 4.6.1.1.3.2-1 illustrates updating a resource using HTTP PATCH.

[image: image7.emf]NF service

consumer

NF service

producer

1. PATCH …/resource (ModificationInstructions)

2. 204 No Content ()

or 200 OK

Figure 4.6.1.1.3.2-1: Updating a Resource using HTTP PATCH

1. The resource that is to be updated is identified by the request URI. The payload body of the PATCH request shall contain the modification instructions.

Editor's Note:
Whether the modification instructions shall comply to IETF RFC 7396 [7], to IETF RFC 6902 [8] or may comply to another mechanism is ffs.

2. On success, "204 No Content" or "200 OK" shall be returned.

On failure, the appropriate HTTP status code indicating the error shall be returned and appropriate additional error information should be returned in the PATCH response body (see subclause 4.8).
4.6.1.1.4
Deleting a Resource

Procedures that allow a service consumer NF (client) to delete a resource from the server shall be specified to use the HTTP DELETE method (see IETF RFC 7231 [6]).

Figure 4.6.1.1.4-1 illustrates deleting a resource.

[image: image8.emf]NF service

consumer

NF service

producer

1. DELETE …/resource ()

2. 204 No Content ()

Figure 4.6.1.1.4-1: Deleting a resource

The resource that is to be deleted is identified by the request URI.

The payload body of the DELETE request shall be empty.

On success, "204 No Content" should be returned and then the payload body of the DELETE response shall be empty.

Editor's Note:
It is ffs whether "200 OK"may be returned on success and what the payload body of the DELETE response shall contain if so.

On failure, the appropriate HTTP status code indicating the error shall be returned and appropriate additional error information should be returned in the DELETE response body (see subclause 4.8).
4.6.1.2
Custom Operations
4.6.1.3
Use of Asynchronous Operations
This clause provides guidelines how to handle cases where the client sending the request cannot expect to receive an immediate (final) response; e.g. by specifying suitable response time values, defining an intermediate response (status=processing) and providing a callback reference for (final) notification.

4.6.2
Use of Subscribe/Notify Communication

4.6.2.1
General

Subscribe/Notify communication between 5GC NFs can be used to keep involved NFs (consumers of a service) informed of data changes or events that occur at another NF (producer of the service). A notification is a message that contains information about the event.

Service consumer NFs (clients) need to subscribe to notifications at the service provider NF (server). This either happens explicitly by means of creating a new subscription resource (see subclause 4.6.2.2), or implicitly by updating a relevant resource.

When the change/event occurs at the service producer NF, notifications (see subclause 4.6.2.3) are sent from the service producer NF to the service consumer NFs. This communication initiated by the service producer to the service consumers requires that the service consumer NF (client) takes the role of an HTTP server and the service producer NF (server) takes the role of an HTTP client.

During the explicit subscription the service consumer NF (client) provides a callback URI and possibly additional filter criteria to the service producer NF (server). When the data-change/event occurs that matches the filter criteria in the subscription, the service producer NF (taking the role of an HTTP client) uses the provided callback URI to notify the service consumer NF (taking the role of an HTTP server) about the change.
4.6.2.2
Management of Subscriptions

The HTTP method to create a subscription shall be POST. The HTTP method to modify a subscription shall be PUT or PATCH. The HTTP method to delete a subscription (i.e. to unsubscribe) shall be DELETE. (see IETF RFC 7231 [6])

Subscriptions may be implicit, i.e. exist without being explicitly created. Implicit subscriptions cannot be deleted but can be modified, suspended or resumed as a side effect of other operations.

Editor's Note:
It is ffs whether an implicit subscription can be modified by a service that is different from the service to which the notification belongs.

As an example, at the UDM the registered AMF is implicitly subscribed to notification about subscriber data changes as side effect of the registration. When no AMF is registered, the implicit subscription is suspended. When an AMF registers, a suspended subscription is resumed (and updated). At AMF change the implicit subscription is modified. At AMF deregistration (purge) the implicit subscription is suspended.

Figure 4.6.2.2-1 illustrates explicit creation of a subscription.

[image: image9.emf]NF service

consumer

NF service

producer

1. POST …/xyz_subscriptions (XyzSubscription)

2. 201 Created (XyzSubscription)

Figure 4.6.2.2-1: Creation of a subscription

The parent resource (collection of subscriptions) is identified by the request URI.

The data structure in the payload body of the POST request shall contain a callback URI, and may contain additional criteria to filter the set of events that trigger a notification.

On success, "201 Created" shall be returned, the payload body of the POST response shall contain a representation of the created subscription, and the "Location" header shall contain the URI of the created resource.

On failure, the appropriate HTTP status code indicating the error shall be returned and appropriate additional error information should be returned in the POST response body (see subclause 4.9).

Editor's Note:
similar description for explicit modification and deletion of a subscription needs to be added.
4.6.2.3
Notifications
The HTTP method for the notification that corresponds to an explicit subscription shall be POST (see IETF RFC 7231 [6]).

Figure 4.6.2.3-1 illustrates a notification.

[image: image10.emf]NF service consumer

(taking the role of a

HTTP server)

NF service producer

(taking the role of a

HTTP client)

1. POST {callback_ref} (Notification)

2. 204 No Content

Figure 4.6.2.3-1: Notification

1. The callback reference provided during creation of the subscription resource, or otherwise known from implicit subscription, is used as the request URI.

Editor's Note:
It is ffs how to know the callback reference for implicit subscriptions.

The payload body of the POST request shall contain the notification payload.

2. On success, "204 No Content" shall be returned and the payload body of the POST response shall be empty.

Editor's Note:
It is ffs whether "200 OK"may be returned on success and what the payload body of the DELETE response shall contain if so.

On failure, the appropriate HTTP status code indicating the error shall be returned and appropriate additional error information should be returned in the PUT response body (see subclause 4.8).

Editor's Note:
It is ffs whether a NF service producer initiated unsubscribe notification is required.
4.7
HATEOAS
This clause provides guidelines on hypermedia controls; may be removed if not needed.

4.8
Error Responses

This clause provides guidelines on Error Responses; may include informations similar to ESI MEC 009 clause 5.15.

5
Documenting 5GC SBI APIs
5.1
Naming Conventions
This clause provides guidelines on naming conventions that should be followed when defining SBI APIs.

5.1.1
Case Conventions

The following case conventions for names and strings are used in the 5GC SBI service APIs.

1) UPPER_WITH_UNDERSCORE

All letters of a string are capital letters. Digits are allowed. Word boundaries are represented by the underscore "_" character. No other characters are allowed.

Editor's Note:
Whether or not digits are allowed at the first position is ffs.

Example 1:

a) DATA_MANAGEMENT

b) CELL_CHANGE

2) lower_with_underscore

All letters of a string are lowercase letters. Digits are allowed. Word boundaries are represented by the underscore "_" character. No other characters are allowed.

Editor's Note:
Whether or not digits are allowed at the first position is ffs.

Example 2:

a) data_management;

b) cell_change.

3) UPPER-WITH-HYPHEN

All letters of a string are capital letters. Digits are allowed. Word boundaries are represented by the hyphen "-" character. No other characters are allowed.

Editor's Note:
Whether or not digits are allowed at the first position is ffs.

Example 3:

a) DATA-MANAGEMENT

b) CELL-CHANGE

4) lower-with-hyphen

All letters of a string are lowercase letters. Digits are allowed. Word boundaries are represented by the hyphen "-" character. No other characters are allowed.

Editor's Note:
Whether or not digits are allowed at the first position is ffs.

Example 4:

a) data-management;

b) cell-change.

5) UpperCamel

A string is formed by concatenating words. Each word starts with an uppercase letter (this implies that the string starts with an uppercase letter). All other letters are lowercase letters. Digits are allowed. No other characters are allowed. Abbreviations follow the same scheme (i.e. first letter uppercase, all other letters lowercase).

Example 5:

a) DataManagement.

b) CellChange

6) lowerCamel

A string is formed by concatenating words. The first word starts with a lowercase letter, all subsequent words starts with an uppercase letter (this implies that the string starts with an lowercase letter). All other letters are lowercase letters. Digits are allowed. No other characters are allowed. Abbreviations follow the same scheme.

Example 6:

a) dataManagement;

b) cellChange.
5.1.2
API Naming Conventions

An API shall take the name of the corresponding service (e.g. Nudm_SubscriberDataManagement). When used in URIs the name shall be converted to lower-with-hyphen and may use an abbreviated form (e.g. nudm-sdm).
5.1.3
Conventions for URI Parts

5.1.3.1
Introduction
The parts of the URI syntax that are relevant in the context of the 5GC SBI service APIs are as follows:

· Path, consisting of segments, separated by "/" (e.g. segment1/segment2/segment3).

· Query, consisting of pairs of parameter name and value (e.g., ?mcc=262&mnc=01, where two pairs are presented).
5.1.3.2
URI Path Segment Naming Conventions

a)
All path segments of a resource URI which represent a string constant shall use lower-with-hyphen (this implies that a path cannot end with "/").

Example 1:
subscriber-data

b)
If a resource represents a collection of entities and the last path segment of the resource URI is a string constant, that last path segment shall be plural.

Example 2:
…/prefix/api/v1/users

c)
For resources where the last path segment of the resource URI is a string constant, that last path segment shall be a noun or a composite noun.

Example 3:
…/prefix/api/v1/users
Example 4:
 …/prefix/api/v1/user-session

d)
For custom operations, the last path segment of the URI via which the operation is invoked shall be a verb, or shall start with a verb.

Example 5:

…/app_instances/{appInstanceId}/rpc/instantiate

Example 6:

…/sessions/rpc/terminate-alle)
All path segments of a URI which are variable names shall use lowerCamel, and shall be surrounded by curly brackets.

Example 7:
…/subscriber-data/{supi}
f)
Once a variable is replaced at runtime by an actual string, the string shall follow the rules for a path segment defined in IETF RFC 3986 [9]. IETF RFC 3986 [9] disallows certain characters from use in a path segment. Each actual 5GC SBI service API specification shall define this restriction to be followed when generating values for path segment variables, or propose a suitable encoding (such as percent-encoding according to IETF RFC 3986 [9]), to escape such characters if they can appear in input strings intended to be substituted for a path segment variable.
5.1.3.3
URI Query Naming Conventions

a)
URI query parameter names in queries shall use lower-with-hyphen.

Example 1:
?nf-type=AMF
b)
Variables that represent actual parameter values in queries shall use lowerCamel and shall be surrounded by curly brackets.

Example 2:
?nf-id={chooseAValue}
c)
When a variable is replaced at runtime by an actual string, the convention defined in clause 5.1.3.2 item f) applies to that string.
5.1.4
Conventions for Names in Data Structures

The following syntax conventions apply when defining the names for attributes in the 5GC SBI service API data structures, carried in the payload body of http requests and responses.

a) Names of attributes shall be represented using lowerCamel.

Example 1:

attributeName

b)
Names of arrays (i.e. those with cardinality 1..N or 0..N) shall be plural rather than singular.

Example 2:

users

c)
Each value of an enumeration type shall be represented using UPPER_WITH_UNDERSCORE.

Example 3:

BLACK_LISTED

d)
The names of data types shall be represented using UpperCamel.

Example 4:

ResourceHandle
5.2
API Definition
5.2.1
Resource Structure
This clause provides guidelines on documentation of the API’s resource structure .
5.2.2
Resources and HTTP Methods
This clause provides guidelines on documentation of the API’s resources and their methods.

5.2.3
Representing RPC as Custom Operations on Resources
This clause provides guidelines on documentation of the API’s remote procedure calls.

5.2.4
Data Models

This clause provides guidelines on documentation of the API’s data models.

5.3
Open API specification files

This clause provides guidelines on documentation of the Open API specification files.

Annex A (informative):
TS Skeleton Template

This annex provides a TS Skeleton Template to be used as a starting point of drafting a 5G System SBI Stage 3 specification.

Annex B (informative):
Backward Incompatible Changes

This annex identifies a list of incompatible changes to an API that require an API version upgrade.
Annex <X> (informative):
Change history

	Change history

	Date
	Meeting
	TDoc
	CR
	Rev
	Cat
	Subject/Comment
	New version

	2017-10
	CT4#80
	C4-175250
	
	
	
	TS skeleton
	0.1.0

	2017-10
	CT4#80
	C4-175358

C4-175252

C4-175253

C4-175254

C4-175255

C4-175331

C4-175332

C4-175333

C4-175334

C4-175359

C4-175327

C4-175328

C4-175360

C4-175330

C4-175336

C4-175337
	
	
	
	Inclusion of pCRs agreed at CT4#80
	0.2.0

_1570540407.vsd
NF service consumer

NF service producer

1. PATCH …/resource (ModificationInstructions)

2. 204 No Content ()
or 200 OK

_1570541397.vsd
NF service consumer

NF service producer

1. POST …/xyz_subscriptions (XyzSubscription)

2. 201 Created (XyzSubscription)

client
server
1. Get .../resource?query_parameters
2. 200 OK (ResourceRepresentation)

_1570541909.vsd
NF service consumer
(taking the role of a HTTP server)

NF service producer
(taking the role of a HTTP client)

1. POST {callback_ref} (Notification)

2. 204 No Content

_1570541037.vsd
NF service consumer

NF service producer

1. DELETE …/resource ()

2. 204 No Content ()

_1570538648.vsd
NF service consumer

NF service producer

1. GET …/resource?query_parameter=value ()

2. 200 OK (ResourceRepresentation)

_1570539539.vsd
NF service consumer

NF service producer

1. PUT …/resource (ResourceRepresentation)

2. 204 No Content () or 200 OK

_1570374515.vsd
NF service consumer

NF service producer

1. POST …/parent_resource (ResourceRepresentation)

2. 201 Created (ResourceRepresentation)

