

	
3GPP TSG CT4 Meeting #79	C4-174334
Krakow, Poland; 21st – 25th August 2017

Source:	ORANGE
Title:	PCR to Unstructured Data Storage Function
Spec:	3GPP TR 29.891 v0.3.0
Agenda item:	6.2.1
Document for:	Agreement

1. Reason for Change
Close some editor’s notes and align the HTTP based solution on HTTP based SBI protocol.
2. Proposal
It is proposed to agree the following changes to 3GPP TR 29.891 v0.3.0.

* * * First Change * * * *
[bookmark: _Toc483324244]6.9	Unstructured Data Storage Function Procedures and Services
[bookmark: _Toc483324245]6.9.1	Requirements
The 5G system supports "stateless" NFs where the "compute" resource is decoupled from the "storage" resource. When NFs are implemented according to this architecture, they store and retrieve their unstructured data into/from a storage function: the Unstructured Data Storage Function (UDSF).
NOTE 1: 	Unstructured data does not mean the data has no structure but rather that it does not need to be specified by 3GPP CT4. The data of one NF is opaque for the UDSF, for the NFs of a different type (e.g. the AMF is a NF of a different type than the SMF) and for the NFs of the same type but from different vendors.
Figure 6.9.1-1 shows the data storage architecture for unstructured data.
[image: ]
Figure 6.9.1-1: Data storage architecture for unstructured data from any NF
The requirements to the UDSF function are described below.
Data management requirements:
The NF shall be able to store and retrieve the data with the following basic operations:
-	Create data.
-	Read data.
-	Update data.
-	Delete data.
In addition the solution should support the following capabilities:
-	Transaction integrity.
-	Pessimistic locking.
If multiple instances of the same NF type and same vendor can read and write the same data, the following additional operations may be consideredshould be supported:
-	Subscribe to notifications of data change.
-	Notification of a data change.
Performance requirements:
The UDSF may be used to store data with very different characteristics and with different real time performance requirements ranging from low to very high ones.
The protocol used over N18 shall provide latency as low as possible.
Multiple logical storage spaces:
NFs of the same type and same vendor may need to store different data in different repositories. The UDSF shall support multiple logical storage spaces. Each logical storage unit shall have a unique identifier.
UDSF sharing:
NFs may share a UDSF for storing their respective unstructured data. NFs of the same type and vendor shall have one or more different logical storage spaces and it shall be possible to prevent NFs of another type or another vendor from accessing it. NFs of different types or of different vendors shall use different access keys.
Collocation with SDSF and UDR:
UDSF may be collocated with SDSF and/or with UDR.
Load and overload requirement:
The solution shall support load control mechanisms to allow an automatic distribution of the traffic load amongst the different instances of the UDSF.
The solution shall support overload control mechanisms to protect UDSF instance when they reach a congestion state and to request the NFs to throttle the requests sent to the UDSF.
Multiple data consistency levels:
Different NFs may require different data consistency levels.
Editor's note:	whether the consistency level shall be passed over the N18 reference point or used by the NF to select the UDSF and the logical storage space is FFS.
Security requirements:
Transport of messages between the NFs and UDSF should be protected to provide privacy and data integrity. Client applications should be authenticated.
Editor's note:	the exact level of protection (encryption and/or integrity protection) is FFS.
NF independent:
The architecture described in Figure 6.9.1-1 is applicable to any NF. The solution shall be independent from the NF type.
[bookmark: _Toc483324246]6.9.2	Solution and Protocol Selection
[bookmark: _Toc483324247]6.9.2.1	Solution 1 – Reuse of the Ud interface
[bookmark: _Toc483324248]6.9.2.1.1	Solution Description
The solution 1 reuses the protocol defined in 3GPP TS 29.335 [12] based on LDAP for data management messages and SOAP for notification and subscription management.
LDAP is an extensible protocol. Load and overload management and consistency level can be supported by defining new LDAP attributes and passing them in existing commands and response codes.
[bookmark: _Toc483324249]6.9.2.1.2	Evaluation
Pros:
-	The solution requires minimal work to the existing specification.
-	It supports most of the requirements.
-	LDAP is an extensible protocol.
Cons:
-	LDAP was designed to access directory servers with well-defined and structured directory information models.
-	No load and overload management solution is specified in 3GPP TS 29.335 [12]. 
-	SOAP is heavier than required.
-	The capability to select the consistency level is not specified in 3GPP TS 29.335 [12]supported.
Editor's note:	the support of the consistency level selection over LDAP needs to be clarified.
[bookmark: _Toc483324250]6.9.2.2	Solution 2 – New Diameter application for data management
[bookmark: _Toc483324251]6.9.2.2.1	Solution Description
The solution 2 relies on a new stateless Diameter application. A few commands are needed to support the data management operations, the notification and the subscription to notifications. The list below provides a mapping of CRUD operations to new Diameter commands.
-	Database-Update-Request/Answer for Create/Update/Delete operations;
-	Database-Read-Request/Answer for Read operation;
-	Database-Subscribe-Request/Answer for subscribing to notification of data change;
-	Database-Notify-Request/Answer for notifying the client of a data change;
The following list of AVPs has to be defined:
-	Key to identify the data;
-	Key-Space identifier;
-	Value to carry the data. The structure of the data is not defined at Diameter level but XML or JSON could be used to structure it inside the AVP. An empty value means that the data identified by the Key shall be deleted;
-	Consistency specifies the consistency requirement.
Load and overload control will be supported by the application by reusing existing Diameter load and overload mechanisms.
Editor's note:	whether advanced querying capabilities are required by the UDSF is FFS.
[bookmark: _Toc483324252]6.9.2.2.2	Evaluation
Pros:
-	Diameter is transported over SCTP that ensures in-sequence transport of messages. Multi-homing and redundant paths ensure resilience and reliability;
-	SCTP doesn’t suffer HOL blocking;
-	Diameter is lightweight and provides high real time performances;
-	The Diameter application is stateless. Hence it fulfils the stateless principle of the REST architecture;
-	It is possible to design a very simple Diameter application fulfilling all requirements;
-	Lot of operating systems now support SCTP API.
Cons:
-	Diameter is not a native protocol to access core database;
-	Lack of Diameter API support by operating systems.
[bookmark: _Toc483324253]6.9.2.3	Solution 3 – REST compliant HTTP based solution for managing data in UDSF
[bookmark: _Toc483324254]6.9.2.3.1	Solution Description
The solution 3 is based on HTTP/2 protocol. The list below provides a mapping of CRUD operations to HTTP/2 methods.
-	Create operation => POST or PUT with URI;
-	Read operation => GET;
-	Update operation => PUT or PATCH;
-	Delete operation => DELETE.
The transport protocol will be TCP in Rel-15.
TCP may be replaced by QUIC over UDP in a later release to solve the HOL blocking issue at transport level.
TCP can be secured with TLS that provides privacy and data integrity as well as various methods for client and server authentication. QUIC is always secured with TLS 1.3 ensuring compulsory privacy and data integrity.
JSON is used as the serialization mechanism.
OpenAPI is the Interface Description Language.
The “two client-server pair” solution for subscription and notification as specified in subclause 6.2.2.2 will be used.
HTTP/2 is an extensible protocol and new headers can be defined by 3GPP to fulfil 3GPP specific requirement such as load and overload management information. Other solution such as modifying the JSON payload is under consideration.
Editor's note:	the language (JSON, XML, HTML…) and exact semantic above HTTP is FFS.
Editor's note:	how subscriptions and notifications are performed is FFS.
Editor's note:	how load and overload is controlled is FFS.
Editor's note:	whether advanced querying capabilities are required by the UDSF is FFS.
[bookmark: _Toc483324255]6.9.2.3.2	Evaluation
Pros:
[bookmark: _GoBack]-	HTTP allows defining RESTful API;.
-	The solution is aligned with the selected SBI 	protocol stack;
-	If QUIC becomes the transport protocol, it would solve the HOL blocking issue at transport level like SCTP with embedded security features and fast connection setup.
Cons:
-	HOL blocking issue if the transport protocol is TCP;
-	No native support of bi-directional communication, which is required for notification;
	Low real time performance.
[bookmark: _Toc483324256]6.9.2.4	Solution 4 – CQL based solution for managing data in UDSF
[bookmark: _Toc483324257]6.9.2.4.1	Solution Description
The solution 4 is based on Cassandra Query Language. Cassandra is an open source Column Store of the NoSQL database family. Cassandra and CQL are developed and maintained by the Apache community. CQL supports basic CRUD operations and many more advanced ones. Some are listed below:
-	Inserting data;
-	Querying;
-	Ordering;
-	Pagination;
-	Others…
CQL has a binary protocol version. CQL binary protocol is transported over TCP/IP. It is an asynchronous protocol allowing multiplexing several requests on a single connection. It supports connection pooling to achieve a reasonable performance and scalability.
It is possible to tune the consistency level on a per-query basis with CQL.
Editor's note:	how subscriptions and notifications are performed is FFS. CQL doesn’t support it subscriptions and notifications as such. and it probably So it requires using a different solution like Ud uses LDAP for CRUD and SOAP for notifications.
CQL supports basic login/password client authentication and allows defining Permissions on database resources per client application. CQL doesn’t support any ciphering capability as such but it can be transported over TLS providing privacy and data integrity.
CQL doesn’t support any load and overload management capability. It doesn’t define any framework for proprietary language extension making it hard to enhance the language for 3GPP specific purposes.
Editor's note:	how load and overload is controlled is FFS.
Editor's note:	whether advanced querying capabilities are required by the UDSF is FFS.
[bookmark: _Toc483324258]6.9.2.4.2	Evaluation
Pros:
-	Advanced query possibilities that would allow more than simple CRUD operations;
-	High real time performance;.
-	CQL + TLS provide required security requirements.
Cons:
-	No load and overload management capability;
-	No proprietary language extension support;
-	Apache Software Foundation is not an SDO;
-	No native support of subscription and notification feature.
Editor's note:	cons evaluation is FFS.

* * * End of Changes * * * *

image1.emf
N18 Any NF UDSF


