
3GPP TSG CT4 Meeting #79
C4-174096
Krakow, Poland; 21st – 25th August 2017
Source:
Ericsson
Title:
Pseudo-CR on RESTful vs RPC interaction model for SBA
Spec:
3GPP TR 29.891
Agenda item:
6.2.1
Document for:
Decision and Approval
1. Introduction
-
2. Reason for Change
There is an unresolved editor's note in TR 29.891, clause 6.2.24, that needs to be addressed:
Editor's Note: the following aspects should be studied and evaluated separately:
- need for a RESTful vs. an RPC approach
- HTTP version
- Transport protocol
- Serialization/encoding protocol (e.g. JSON)
- Interface Definition Language

3. Conclusions

-
4. Proposal

It is proposed to agree the following changes to 3GPP TR 29.891 v0.3.0
* * * First Change * * * *

6.2.2.4
Comparison of RESTful and RPC protocol design
6.2.2.4.1
Solution 1 – RESTful model
6.2.2.4.1.1
Description

REST (Representational State Transfer) is a set of architectural principles introduced by of Roy T. Fielding in his Dissertation [xx]. The principles are:

1.
Client/Server:
Split of responsibilities between client and server. A Client sends a request to the server which returns a response. This allows a separation of concerns, which enhances portability and scalability.

2.
Stateless:
Client context must not be stored on the server between requests. Each request from any client contains all the information necessary to service the request, and session state is held in the client.

3.
Cacheable:
If a response is cacheable, then a client cache is given the right to reuse that response data for later, equivalent requests. This allows to eliminate some interactions, improving efficiency, scalability, and average latency.

4.
Uniform interface:
This principle is composed on the following constraints:
a.
Resource Identification
Individual resources are identified in requests, while the resources themselves are conceptually separate from the representations that are returned to the client.
b.
Resource manipulation through representations
When a client holds a representation of a resource, it has enough information to modify or delete the resource.
c.
Self-descriptive messages
Each message includes enough information to describe how to process the message.
d.
Hypermedia As the Engine of Application State (HATEOAS)
Having accessed an initial URI for the REST application, a REST client should then be able to use server-provided links dynamically to discover all the available actions and resources it needs. As access proceeds, the server responds with text that includes hyperlinks to other actions that are currently available. There is no need for the client to be hard-coded with information regarding the structure or dynamics of the REST service.
5.
Layered system:
A client might not be connected directly to the end server, but to an intermediary along the way. Intermediary servers may improve system scalability by enabling load balancing, providing shared caches and enforcing security policies.

6.
Code on Demand (optional):
REST allows client functionality to be extended by downloading and executing code in the form of applets or scripts. This simplifies clients by reducing the number of features required to be pre-implemented.
When this is applied to an HTTP-based API, it implies (among other things) that the client and server are expected to interact by a uniform manipulation of resources, via the standard HTTP verbs (GET, POST, PUT, DELETE, etc.), and their associated semantics and restrictions. It essentially means that the interactions between client and server are narrowed down to a CRUD (Create, Read, Update, Delete) type of interface, applied to resource representations.
For example, a resource can be a PDN connection in SMF, and a client entity could manipulate it via a resource representation, which can be created (HTTP PUT), read (HTTP GET), deleted (HTTP DELETE), etc.
6.2.2.4.1.2
Evaluation
It is evident that the REST architectural style offers remarkable benefits, and that's why its acceptance in the design of web systems has grown exponentially in the last years. However, it should be also noted that the current architectural definition (stage-2) of the 3GPP 5GC has followed a totally opposite paradigm, mainly based on describing interactions between entities by following a procedure/service invocation, or the triggering of a certain action on the server (very much like a Remote Procedure Call), rather than a resource-oriented architectural definition, which would have been desirable in order to achieve a smooth and straightforward stage-3 protocol specification phase.
This fact does not mean that RESTful protocol design cannot be used, since it is often rather straightforward to map the service invocation described in stage-2 to a RESTful resource manipulation operation; when such mapping is easy or straightforward, it is indeed recommended to follow such design approach.

However, in other cases, mapping the stage-2 service invocation style of interaction to a resource operation is quite awkward and totally counter-intuitive, making it very hard and cumbersome the stage-3 protocol definition, which will affect the understanding of the relationship between stage-3 protocol and stage-2 service operations for implementers, making the system prone to inter-operability problems.
6.2.2.4.2
Solution 2 – Remote Procedure Calls (RPC)
6.2.2.4.2.1
Description

An RPC-style of interaction implies essentially that the client invokes a certain action (procedure) to be executed on the server. It should be noted that, in this context, the term RPC does not necessarily imply a different choice of protocol, or message formats; it is still a request/response HTTP protocol, and the payload of the request and response messages are formatted following the same considerations than the RESTful approach (e.g. JSON, CBOR…).
It should be pointed out that this architectural style is, essentially, how 3GPP has modelled the mobile networks during the last 20 years, with tight coupling of client and servers, and a thorough and detailed protocol specifications mandatory for both ends of each interface.
When this is applied to an HTTP-based API, the main characteristic of the RPC approach is that the standard HTTP verbs do not imply a CRUD semantics applied on resources; on the other hand, only one verb (e.g, POST, or PUT) is used, and the procedure to be invoked is identified typically in the URI of the HTTP request. Then, the input parameters of the procedure are encoded in the document POST'ed or PUT'ed by client, and the output parameters of the procedure are sent back by the server in the payload of the HTTP response message.
Example of an HTTP request/response interaction following an RPC-style (the example represents an interaction from a well-known S6a protocol in the EPC system, just for the purpose to illustrate how a similar interaction would look like in the 5GC):

POST /operations/S6a:Authentication_Information_Request HTTP/1.1
Host: hss.operator.com
Content-Type: application/json
{
 "S6a:input" : {
 "IMSI" : "987654321098765",
 "VPLMNID" : "123456",
 "RequestedEUTRANAuthenticationInfo" : {
 "NumberOfRequestedVectors" : 1,
 "ImmediateResponsePreferred" : true
 },
 "Flags" : "Request_UE_Usage_Type"
 }
}
HTTP/1.1 200 OK
Date: Thu, 26 Jan 2017 20:56:30 GMT
Content-Type: application/json
{
 "S6a:output" : {
 “AuthenticationInfo” : {
 "EUTRANAuthenticationVectors" : [
 {
 "VectorNumber" : 1,
 "RAND" : "NzA5Mzg0MDI5ODA4NDMyMQ==",
 "XRES" : "MjA5Mzg0MDU5ODYwMDM4MQ==",
 "AUTN" : "MTIzNDU2Nzg5MDEyMzQ1Ng==",
 "KASME" : "OTg3NjU0MzIxMDY1NDMyMQ=="
 }
]
 },
 "UE_Usage_Type" : 1
 }
}
6.2.2.4.2.2
Evaluation
For 5GC, the SBA definitions in stage-2 follow an architectural style that matches much more closely an RPC style of interaction, rather than a REST approach.
It should be noted that a RESTful or RPC approach is not inherently better or worse, and that several of the advantages present in REST, are also achievable by RPC.
Maybe, one of the advantages where REST is clearly superior is the higher degree of decoupling between client and server (allegedly achieved by the use of the HATEOAS principles). However, this characteristic is expected to bring more benefits in a scenario where the SDO defining an API has no, or little, control over the clients of such API; but this is NOT the case of 3GPP 5GC, where both client and servers are internal network entities fully specified, in all detail (including backwards compatibility across releases, feature negotiation mechanisms, protocol extensibility, etc..), by 3GPP; these criteria, however, may be different for interfaces exposed towards external clients of the 3GPP system.
6.2.2.4.2
Conclusion
Conclusion: Take the above factors into account when choosing the most adequate style (REST or RPC) for each interaction / service, rather than applying systematically one of the modeling approaches, everywhere. It is NOT recommended to try to force a purist REST approach to model interactions where an RPC style would suite much better, just for the sake of complying with the REST principles.
* * * End of Changes * * * *

