
3GPP TSG CT4 Meeting #79
C4-174095
Krakow, Poland; 21st – 25th August 2017
Source:
Ericsson
Title:
Pseudo-CR on Interface Definition Language for SBA
Spec:
3GPP TR 29.891
Agenda item:
6.2.1
Document for:
Decision and Approval
1. Introduction
-
2. Reason for Change
There is an unresolved editor's note in TR 29.891, clause 6.2.24, that needs to be addressed:
Editor's Note: the following aspects should be studied and evaluated separately:
- need for a RESTful vs. an RPC approach
- HTTP version
- Transport protocol
- Serialization/encoding protocol (e.g. JSON)
- Interface Definition Language
3. Conclusions

-
4. Proposal

It is proposed to agree the following changes to 3GPP TR 29.891 v0.3.0
* * * First Change * * * *

6.2.2.7
Interface Definition Language
6.2.2.7.0
Introduction
An Interface Definition Language (IDL) is a specification language used to describe data models, and interactions between distributed software components.

Ideally, and IDL should have the following characteristics:

-
Formal: It has to be machined-parsed, so it allows automatic checking of correctness and consistency

-
Abstract: It is not bound to specific realizations, in terms of data modelling, or protocol mechanisms

-
Independent of programming language or developing environment

-
Independent of protocol or Inter-Process Communication mechanisms

-
Independent of the data serialization format
In 3GPP, one of the IDLs with a widest usage, traditionally, has been ASN.1; however, for SBA, and specifically for web technology (RESTful APIs, HTTP/JSON, etc…), there are other approaches with a wider adoption currently in the industry.

A non-exahustive list of alternatives could be:

-
Standards-based

-
ITU-T/ETSI: ASN.1
-
OASIS: RELAX-NG
-
W3C: WSDL / XML Schema
-
IETF: ABNF, YANG
-
Non-Standard (De-facto Industry standards)

-
OpenAPI Specification (Swagger 2.0)
-
JSON Schema

-
JSON Content Rules

-
JSON RPC
-
RAML

-
Protocol Buffers

-
Apache Thrift
From the above list, the alternatives have been narrowed down to just those options with a paramount characteristic where they excel at. An exhaustive and detailed analysis of each and every alternative from the above list, is not intended.
6.2.2.7.1
Solution 1 – YANG/RESTCONF
6.2.2.7.1.1
Description

YANG is a data modelling language developed by IETF for the NETCONF protocol. It was originally designed for Network Management, as a replacement for the SNMP protocol (and the associated SMI information modelling framework).
It allows the definition of data models (both "configuration" data and "state" data), and also specific interactions between network elements, in the form of "Event Notifications" and "Actions" (associated to data objects), and generic "Remote Procedure Calls" to be invoked in a network entity.
YANG is defined in IETF RFC 6020 [xx].

In addition, IETF RFC 8040 [yy] defines an HTTP-based protocol (RESTCONF) to access data, and invoke actions, defined in YANG following a REST approach, with standard serialization options based on XML or JSON.
6.2.2.7.1.2
Evaluation
The main characteristic of this alternative is its capability in terms of abstract data modelling. It shows a higher level of decoupling between the generic data model definition and the actual concrete implementation, in the form of a specific protocol realization and a specific data serialization format.
Additionally, a YANG data model can be used in a standard manner to describe a RESTful type of interaction between client and server, and at the same time, it can also describe RPC (Remote Procedure Call) interactions.
The main issue, from a 3GPP perspective, is that this language was not originally conceived as a general-purpose modeling language and, instead, its primary scope was the Network Management area. In addition, the learning curve is higher than other simpler alternatives.
6.2.2.7.2
Solution 2 – OpenAPI Specification (Swagger)

6.2.2.7.2.1
Description

OpenAPI (formerly known as Swagger) defines a standard, programming language-agnostic, interface description for REST APIs. It is specified at:
-
https://github.com/OAI/OpenAPI-Specification
It consists on a language specification itself, and also on a number of tools intended for specification, documentation and code generation for implementation of client and server sides of the API, together with automation of test cases.
The files describing the RESTful API in accordance with the Swagger specification are represented as JSON objects and conform to the JSON standards. YAML, being a superset of JSON, can be used as well to represent a Swagger specification file.
For the definition of primitive data types, the specification is based on the JSON Schema draft-4 (https://tools.ietf.org/html/draft-zyp-json-schema-04#section-3.5).
The last version of OpenAPI Specification, recently approved (June 2017), is v3, although the most stable version is v2, which has been in production for several years now (since 2014).
6.2.2.7.2.2
Evaluation
The main characteristic of this alternative is its massive and widespread adoption in the industry, for RESTful API design. It can be considered as a de-facto standard (although not backed-up by a formal SDO), and it has the biggest ecosystem of tools (both commercial an Open Source) and community support.
The main criticism to Swagger relies on its lack of support for hypermedia, when the framework is mainly targeted for RESTful API specification. This implies that attempting to fulfil the HATEOAS (Hypermedia As The Engine Of Application State) principle, is not straightforward. Sources:
-
http://blog.novatec-gmbh.de/the-problems-with-swagger/
-
https://jimmybogard.com/swagger-the-rest-kryptonite/
In addition, given it primary focus on the RESTful architectural style, its support for RPC style of interactions is not so well supported, although there are workarounds to overcome this issue.
6.2.2.7.3
Solution 3 – Protocol Buffers
6.2.2.7.3.1
Description

Protocol Buffers is a mechanism, originally developed by Google and then turned to Open Source, to serialize structured data. It defines its own language (proto3, as the last version), to specify the structure of the data (messages, parameters, data types, etc) so, in that sense, it can be considered as an IDL.
Protocol Buffers documentation can be found in:

-
https://developers.google.com/protocol-buffers/, and

-
https://github.com/google/protobuf/
The encoding of the data over-the-wire is binary and it is very compact and efficient, at the expense of not being self-describing (that is, there is no way to tell the names, meaning, or full datatypes of fields without an external specification).
Protocol Buffers were originally conceived for usage with RPC-style of interactions, internally at Google, and there is a specific protocol (gRPC) designed for high-performance RPC interactions; nevertheless, they can also be used to model RESTful APIs.
6.2.2.7.3.2
Evaluation
The main characteristic of this alternative is its efficiency and higher performance.
The main drawback is that the language is maintained and evolved by Google, and it is bound to a number of tools (compilers, code generators, runtimes…) also developed and maintained mainly by Google, and therefore it is not a system fully specified by an SDO.
6.2.2.7.4
Conclusion

Given the widest industry acceptance for design of RESTful APIs, and the availability of a big ecosystem of tools and community support, it is recommended to use OpenAPI Specification as the IDL for usage in 5GC.
It is recommended that the definition of each interface is done by including a normative section, containing the Swagger specification file), in each Technical Specification in 5GC, similarly to how it has been done is previous TS's in 3GPP, whenever an IDL has been used (e.g. ASN.1 in TS 29.002, XML Schema in TS 29.328, Swagger itself in TS 29.116, etc…).
* * * End of Changes * * * *

