3GPP TSG CT4 Meeting #74	C4-164032
Tenerife, Spain; 25th – 29th July 2016

Source:	Cisco Systems Inc
Title:	Discussion on Protocol Selection for Sx Interface of Control / User Plane Separated EPC 
Agenda item:	6.3.8
Document for:	DISCUSSION


Introduction
SA2 has concluded the study on control / user plane separation of EPC nodes. Stage 3 has to identify a protocol for the Sx interface between the control plane nodes (SGW-C, PGW-C and TDF-C) and the user plane nodes (SGW-U, PGW-U and TDF-U). The following are the key requirements on the Sx interface:

1. Ability to advertise the capabilities of the U plane to the C plane
a. Support for TEID allocation in the U plane.
b. Whether U plane can support the use of TEID allocated by the C plane (this has a direct relevance on whether U plane can support Solution#3 given in section 6.1.1.5.4 of TR 23.714, recommended as the solution for restoration by stage 2).
c. Support for extended buffering of data.
d. Support for taking subscriber information in a transparent container from the C plane in order to add meta data into the user plane data routed by the U plane, for e.g HTTP header enrichment.
e. Support for list of Gx supported features that need corresponding support from the U plane – for e.g
i. Support for application detection at the U plane for the ADC feature.
ii. Support for UMCH (the U plane should support accounting for the usage until a given time threshold, support monitoring the inactivity time and once that elapses stop accounting the time of usage and once traffic becomes active resume the accounting etc)
iii. Time based usage monitoring (TimebasedUM)
iv. ExUsage
v. Packet marking according to Traffic Steering Policy
2. Ability for C plane to convey the traffic handling rules (THR) along with a reporting key to the U plane where the U plane is expected to account the number of packets / bytes sent and received in each direction against each reporting key.
3. Reporting of accounted information at session level and reporting key level from the U plane to the C plane at set triggers. The triggers could be either volume based or time based.
4. Ability for C plane to convey the THR rules along with actions against that THR – for e.g some flows need to be routed by the U plane to the C plane (IPv6 RA, RS and ND, DHCPv4 and DHCPv6).
5. Support for nodal procedures like capability announcement from U plane to C plane, heartbeat between C plane and U plane, U plane announcing to C plane that its going out of service, U plane announcing its load / overload information to the C plane (it is FFS whether this information is exchanged via nodal procedures or piggybacked over session level procedures).
6. Support for session level procedures like session establishment, modification and deletion.

This paper analyses the requirements on the transport protocol and the application level protocol to support the above Sx requirements and compares 4 different protocols on how they fare against these requirements. This paper also analyses the need for a separate encapsulating protocol between the U plane and the C plane to forward the U plane packets to the C plane, for use cases like IPv6 RS/RA/ND, packets for X3 interface of LI, packets for extended buffering

Analysis of Transport Protocols
The following table analyses the requirements on the transport protocol needed for Sx

	Sl.No
	Feature
	Is this Required on Sx?
	Comments
	Transport Protocol that Meets the Requirement

	1
	Reliable delivery of message
	Yes
	Reliability can also be ensured by the application protocol through retransmissions and error handling
	TCP, SCTP

	2
	Message boundary preserving with datagram semantics
	Good to have
	
	UDP, SCTP

	3
	Ordered delivery
	Not necessary
	For the Sx interface the order of installation of traffic handling rules at the U plane doesn’t really matter
	TCP, SCTP with ordered delivery

	4
	Doesn’t suffer Head of line blocking
	Yes
	Very important for cases like emergency call sessions where an inflight normal session's message shall not block an emergency call's session
	UDP, SCTP

	5
	Easy to implement stack on simple forwarding devices
	Yes
	User plane entities could be simple forwarding devices which are bought commercially off the shelf. They would be mostly supporting widely used transport protocols 
	TCP, UDP



Considering that in the past CT4 has debated heavily on the issues of head of line blocking for other interface protocol selection, it can be considered that choosing TCP as the transport protocol for the Sx interface will cause serious issues in the cases like a low or medium priority session's Sx message which is currently in flight in the Sx is blocking an emergency call related session's Sx message. One way to mitigate this is to use multiple TCP connections but then management of multiple TCP connections towards each logical endpoint within a U plane will become an operational issue.

Hence it can be concluded that either SCTP or UDP fits the need as the transport protocol for Sx interface. Now comparing between SCTP and UDP, though SCTP offers reliability, expecting it to be implemented in simple forwarding devices that could be used as User plane routers is a little far fetched. Not many commercially off the shelf available forwarding devices have SCTP stack implemented.

The only option left is UDP which is a universally available transport protocol. Though it doesn’t offer transport level reliability, this can be handled via application level retransmits and acknowledgements. 

Conclusion #1: It is concluded that the Sx protocol shall use UDP as the transport due to following reasons
1. Easily available transport protocol in almost all commercially off the shelf forwarding devices.
2. Does not suffer HOL blocking.
3. Preserves message boundaries and provides datagram semantics.
4. Reliability can be handled at application level by using responses / acknowledgements and retransmissions (similar to how GTP-C works)
 
Analysis of Protocols for Sx Interface
OpenFlow
OpenFlow is a widely used protocol for software defined networks especially in the data center and switching areas. This protocol is owned by the Open Networking Foundation (ONF) and the latest published version of the specification available is OpenFlow 1.5.1 [6], while most switch vendors are still only compliant to OpenFlow 1.3 which is a long term supported (LTS) release. The next long term supported OpenFlow version is OF 1.6 which is currently under standardization in ONF  

The following are the key features of OpenFlow protocol
1. OpenFlow Switch protocol operates on a OpenFlow Logical Switch (OFLS).
2. An OpenFlow capable switch (which is a physical node) can be configured and partitioned via OF-Config protocol as multiple OFLS.
3. Each OFLS can support one or multiple tables. The packets flow through these tables in a pipeline.
4. Each table contains multiple flow entries.
5. The OF Switch Protocol installs flow entries into these flow tables and provides actions to be performed on the matching flows.
6. Incoming packets are matched against the flow entries and actions are taken.
7. Actions could be further forwarding of packets within the pipeline, mapping it to a group table and performing a group action, metering a packet (bit rate enforcement), modifying packet header fields etc.
8. TCP is used as the transport protocol to carry the OF Switch Protocol. TLS is used for security.
9. Common device functionalities can be implemented as OpenFlow tables and can be abstracted and exposed as table type patterns (TTP) and control plane can operate on the data plane by activating the TTPs.

The following table summarizes the support capability in OpenFlow 1.5.1 for some of the key 3GPP requirements.
	Sl.No
	Capability
	OpenFlow Support
	Comments

	1
	Transport protocol that does not suffer HOL blocking
	No
	OpenFlow 1.5.1 uses TCP as the transport which suffers from HOL blocking. OpenFlow although supports use of UDP as the transport for auxiliary channels, the main channel is always over TCP.

	2
	Flow operation prioritization
	No
	Either use a transport protocol other than TCP or use multiple TCP connections.

	3
	Asynchronous reporting of accounted information at a per flow level at set triggers
	No
	The per flow statistics can be fetched by the C plane only by using a query / response mechanism. OpenFlow 1.5.1 currently doesn’t support setting of triggers for asynchronous reporting of accounted information to the C plane. Neither is it in plan for OpenFlow 1.6

	4
	Support for extensions for GTPU tunnelling
	No
	Not supported until OpenFlow 1.5.1 but in plan for OpenFlow 1.6 The ONF MPC Architecture Document [1] which is currently under ONF wide review has identified the extensions needed in OpenFlow for supporting GTP tunnelling.

	5
	Capability exchange from the U plane to the C plane
	Yes
	OpenFlow supports a switch capability exchange by the way of the Controller requesting the switch for its capabilities after the TCP session is established. However the capabilities is just a 32 bits bitmask. This restriction may not be sufficient for 3GPP. 3GPP may have to define a new message to exchange extended capabilities.

	6
	Support for installing traffic handling rules along with actions to be performed on matching flows
	Yes
	Ofp_flow_mod command can be used to create flow entries in the flow tables, provide the OXM match fields for packet matching and specify actions to be performed on the matched packets.

	7
	TEID allocation by control plane
	Yes
	Ofp_flow_mod command can be used to specify the flow to match against and the action as GTP encap (after OF 1.6) along with the TEID to use for encapsulation.

	8
	TEID allocation by user plane
	No
	A request / response mechanism needs to be added to OF for the controller to query the user plane for a TEID. 

	9
	Volume based accounting
	Yes
	Each flow entry has an associated statistics and counters to measure the volume of data that has hit that flow.

	10
	Time of usage accounting, Trigger criteria based accounting
	No
	A concept called Autonomous functions is under discussion for OF 1.6 whereby advanced functions can be punted off to these Autonomous functions implemented as software modules on the switch. Each flow entry that needs advanced functions are made to point to an autonomous function ID. What is done inside that autonomous function is implementation dependent. One could implement such time of usage kind of accounting under the autonomous functions. However at this point in time this concept is still nascent and is not clear whether this will be supported by OF 1.6.

	11
	Ease of extending OpenFlow for 3GPP requirements
	Simple process
	Experimenter IDs can be used to specify custom messages and actions. However the experimenter IDs need to be registered with ONF and custom extensions need to fit into the logical architecture of the OFLS. Also to avoid duplication of work between custom extensions and the mainline features discussed in ONF for subsequent releases of OpenFlow, participation in ONF from vendors and operators that attend 3GPP is needed.

	12
	Backwards compatibility across releases
	Poor
	OpenFlow has traditionally neglected backwards compatibility. For e.g Meters were an instruction in OF 1.3 but they were changed to "Actions" in OF 1.5. The way OF addresses backwards compatibility is by the switch announcing its version compatibility to the controller and the controller using that version specific mechanisms.



As can be seen above OpenFlow has a number of gaps with respect to functionalities needed by 3GPP. On top of it by using TCP as the transport it is prone to HOL blocking. Trying to extend OpenFlow to fill these gaps is as good as defining a new protocol for 3GPP's needs.

Observation 1: OpenFlow has number of gaps with respect to functionalities needed by 3GPP. Trying to extend OpenFlow to fill these gaps is as good as defining a new protocol for 3GPP's needs.

ForCES

IETF had worked in the past in defining a framework for control and user plane separation through the IETF RFC 3746 [2] (FoRCES) and subsequently a FoRCES protocol between the control and user plane in IETF RFC 5810 [3].

The following is how FoRCES works:

· The functionality a switch performs is specified by a Forwarding Element (FE) model. An example FE model is given in IETF RFC 5812 [3]
· Each FE is configured with one or mode Logical Function Blocks (LFBs)
· The packets flow through the LFBs.
· The FoRCES Protocol (FP) defined in IETF RFC 5810 operates on the LFBs. This protocol allows GET / SET operations on the LFBs as per the information allowed to be operated on by the FE model.
· Using such a framework any functionality needed on a forwarding element (including 3GPP specific functions) can be configured on the FE and operated upon at run time using the FP protocol.

Even though FoRCES was defined as a highly extensible framework, this very high level of abstraction also acted as a deterrent to implement. Just to implement a simple switch requires coming up with a detailed model of the switch and its LFB classes, the hardware should be made generic enough to accept this model and configure itself, and then it should handle the FP protocol for runtime operations on this switch. Consequently, there is hardly any implementation of FoRCES compliant networking device even though this has existed for 12 years now.

Observation 2: Considering the lack of support for FoRCES protocol by existing networking devices and it being a too generic and complex a framework to implement, it can be observed that it may not be the right protocol for Sx interface.

IETF DMM FPC

IETF is currently working on distributed mobility management that addresses control and user plane separation as well. The DMM workgroup is working on a draft protocol proposal https://datatracker.ietf.org/doc/draft-ietf-dmm-fpc-cpdp/ [7] that specifies a framework for the control plane to provide the forwarding policy to the data plane and also defines a data model for the information exchange. 

The IETF DMM FPC protocol works in 2 models. In model 1, the control plane configures the policy in the data plane in the form of messages and IEs. In model 2, the data plane offers a set of services to the control plane. The control plane activates those services by specifying the service names and the parameters needed for those services. This is similar to the TTP concept in OpenFlow.

This draft does not specify any protocol encoding. It only defines a data model. The data model given in Annex A of the draft (see A.1.2 for the information model as a tree) could be leveraged to map into any protocol encoding. However this information model is very basic. It only addresses the packet classification, tunnelling and QoS aspects. The notification of events is incomplete. The model does not address cases like how to specify the kind of accounting that needs to be applied for a particular packet classification (flow) like volume based / time of usage based. So even if 3GPP takes up this information model as a reference, it needs to be extended for the 3GPP requirements.

Observation 3: Some parts of the IETF DMM FPC protocol's information model defined in Annex A of draft-ietf-dmm-fpc-cpdp [7] can be leveraged for modelling the messages and IE structures of the Sx interface. However this model is very simplistic and does not address all the 3GPP requirements.

3GPP Native Protocol

Having analysed other available protocols defined by other SDOs and it is being clear that no matter which other SDO's protocol we choose, there is lot of extension needed to that protocol to fit 3GPP requirements. Consequently, one could argue that it makes defining a new 3GPP specific protocol provides better control and ownership to 3GPP. Based on Conclusion #1, the protocol could be modelled similar to GTP (as it works over UDP). However the existing GTP protocol is mostly used for session level information exchange and there are hardly any nodal procedures, except for echo request and PGW restart notification procedure. For the Sx interface following nodal procedural requirements should be considered from the very beginning

1. Advertising U plane node capabilities with fine grain feature granularity.
2. Heartbeat between C plane and U plane.

Hence a GTP like protocol can be modelled considering the above node level procedure requirements as well as the Sx session management procedures. Care should be taken to model the information elements such that their logical hierarchy is maintained and its easily extendable.

Conclusion #2: A 3GPP native protocol for Sx interface shall be chosen which is modelled similar to GTP.

Protocol for U Plane Forwarding of Data to the C plane
As per stage 2 for the following scenarios, the user plane packets need to be routed to the control plane in scenarios #2, #3, #4 and #5 of the figure given below.




Figure 1: Example scenarios for user plane traffic forwarding to the control plane

In order to route the packets from the U plane to the C plane, it has to be sent over a tunnel with an identifier that uniquely identifies the PDN / bearer at the C plane for which the data is sent. For this purpose the following tunnelling options could be considered

1. Use GTPU: The C plane maintains a GTPU endpoint and a TEID for the PDN / bearer and provides that information to the U plane so that the U plane punt the packets to the C plane on that GTPU FTEID in scenarios #2 to #5 above. The advantage of using GTPU is that the U plane anyways has to support GTPU for S5U and S1U and hence it is easy to extend its usage for scenarios #2 to #5 above.
2. Use NSH [8]: The C plane provides an NSH SPI to the U plane for each PDN / bearer and the U plane tags this SPI in the packets punted to C plane for scenarios #2 to #4. Along with the SPI the C plane also provides a per bearer identifier as a metadata to be used by the U plane. The U plane tags this metadata also in the packets punted to C plane for scenarios #2 to #4. The following diagram shows the NSH encapsulation
[image: ]
Figure 2: An example NSH encoding of data sent from U plane to C plane

It should be noted that NSH inserts a NSH header above the original packet and the NSH header itself has to be encapsulated inside another protocol like GRE / VxLAN / IP (for IP a protocol value for NSH needs to be allocated by IANA yet) as specified in draft-ietf-sfc-nsh-05 [8]/

The advantage of using this option is that scenarios #2 to #4 can be treated similar to scenario #6. NSH is used extensively for service chaining. If one carefully looks at scenarios #2 to #4, it is nothing but looping in the C plane as part of a packet's service chain. So purely from a U plane complexity perspective using NSH for scenarios #2 to #5 keeps the U plane simple at least for PGW-U.

3. Use GRE: The C plane provides a GRE tunnel ID to the U plane for each PDN / bearer and the U plane uses this GRE tunnel for the packets punted to C plane for scenarios #2 to #5. There is no obvious advantage of using GRE over GTPU or NSH.

[bookmark: _GoBack]Apart from these due to restoration scenarios and handling of missing GTPU sessions and avoiding GTPU error indication, the U plane may be required to route the received packet for which it does not have a session, to the C plane. This routing will not have a session identifier at the tunnel header as the U plane does not have a session. Nevertheless, the same tunnelling protocol used for U plane forwarding of data to C plane can be used for this purpose with the tunnel header carrying NULL data (0 TEID in case of GTPU and no session specific metadata in case of NSH). The C plane identify the session to which the packet belongs based on identifiers in the inner payload of the tunnel. Solutions for restoration are discussed in separate PCRs.

Observation 4: It can be observed that GTPU or NSH encapsulation can be used for forwarding the data plane packets from U plane to C plane. GTPU anyways needs to be mandatorily supported on the U plane devices and hence it can be easily used for forwarding of data packets from the U plane to C plane. NSH on the other hand offers an advantage in the case of PGW-U plane not requiring to really differentiate between scenario #6 and scenarios #2 to #4. But deployment of SGi-LAN itself is optional and hence support for NSH in the U plane could also be optional.

Conclusion #3: A separate encapsulation protocol shall be specified for the forwarding of user plane packets from the U plane to the C plane.

Conclusions
Conclusion #1: It is concluded that the Sx protocol shall use UDP as the transport due to following reasons
1. Easily available transport protocol in almost all commercially off the shelf forwarding devices.
2. Does not suffer HOL blocking.
3. Preserves message boundaries and provides datagram semantics.
Reliability can be handled at application level by using responses / acknowledgements and retransmissions (similar to how GTP-C works)

Conclusion #2: A 3GPP native protocol for Sx interface shall be chosen which is modelled similar to GTP.

Conclusion #3: A separate encapsulation protocol shall be specified for the forwarding of user plane packets from the U plane to the C plane.

References
[1]	ONF Mobile Packet Core Architecture and Protocol Document, Open Networking Foundation (Not publicly available yet still under ONF wide review – Needs ONF membership login to access https://login.opennetworking.org/bin/c5i?mid=4&rid=5&gid=0&k1=1283&tid=1467605965).
[2]	IETF RFC 3746, Forwarding and Control Element Separation (FoRCES) Framework.
[3]	IETF RFC 5810, Forwarding and Control Element Separation (FoRCES) Protocol Specification.
[4]	IETF RFC 5812, Forwarding and Control Element Separation (FoRCES) Forwarding Element Model.
[5]	IETF#93 – SDN and NFV – OpenFlow and FoRCES: https://www.ietf.org/edu/tutorials/sdn-nfv-openflow-forces.pdf
[6]	OpenFlow Switch Protocol Specification v1.5.1, https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-switch-v1.5.1.pdf
[7]	IETF DMM Protocol for Forwarding Policy Configuration, https://datatracker.ietf.org/doc/draft-ietf-dmm-fpc-cpdp/
[8]	IETF Network Service Header, https://tools.ietf.org/html/draft-ietf-sfc-nsh-05

oleObject1.bin


Lawful intercept�(target for duplicated traffic depends on solution as per clause 6.1.1.12).





NOTE: Solutions for LI are under discussion and it is shown here as an example, it does not make it a conclusion of the TR





RADIUS, Diameter, DHCPv4/v6 for IP address allocation, as per solution in clause 6.1.1.8.2 with in-band signalling. Also applies to PAP/CHAP authentication, authorization etc,�(another valid option is that signaling goes outside UP)





Extended buffering for UE in PSM, as per solution in clause 6.1.1.10.2.��NOTE: Solution is under discussion and it is shown here as an example, it does not make it to a conclusion of this TR.





IPv6 RS/RA, stateless DHCPv4/v6, DHCPv6 PD, as per solution in clause 6.1.1.8.2.





FMSS�(up-link traffic from SGi-LAN to PDN may or may not traverse the UP function)





5.





4.





3.





2.





6.





1.





SGi-LAN





UE





CP





UP





PDN





CP or �LI system





UE





UP





PDN





UE





CP





UP





PDN





Regular user-plane traffic, including mapping to bearers





PDN





CP





CP





CP





UE





UP





UP





PDN





UE





UE





UP





PDN









image2.png

image1.emf
 

PDN 

UP 

CP 

UE 

Regular user-plane traffic, 

including mapping to bearers 

PDN 

UP 

CP 

UE 

IPv6 RS/RA, stateless DHCPv4/v6, 

DHCPv6 PD, as per solution in 

clause 6.1.1.8.2. 

PDN 

UP 

CP 

UE 

RADIUS, Diameter, DHCPv4/v6 for IP 

address allocation, as per solution in 

clause 6.1.1.8.2 with in-band signalling. 

Also applies to PAP/CHAP 

authentication, authorization etc, 

(another valid option is that signaling 

goes outside UP) 

PDN 

UP 

CP 

UE 

Extended buffering for UE in PSM , as 

per solution in clause 6.1.1.10.2. 

 

NOTE: Solution is under discussion and 

it is shown here as an example, it does 

not make it to a conclusion of this TR.  

PDN 

UP 

CP or  

LI system 

UE 

Lawful intercept 

(target for duplicated traffic depends on 

solution as per clause 6.1.1.12) . 

 

NOTE: Solutions for LI are under discussion 

and it is shown here as an examp le, it does 

not make it a conclusion of the TR  

PDN 

UP 

CP 

UE 

FMSS 

(up-link traffic from SGi-LAN to 

PDN may or may not traverse the 

UP function) 

SGi-LAN 

1. 

2. 

3. 

4. 

5. 

6. 


