
3GPP TSG CT WG4 Meeting #60_Ad_Hoc
C4-130469
San Diego, US; 9th – 11th April 2013

Source:
Orange
Title:
Pseudo-CR on Diameter Overload Problem and Existing Mechanisms
Spec:
3GPP TR 29.809 v0.1.0
Agenda item:
4.1
Document for:
Decision

1. Introduction
This document aims to complete the section 5.2 "Diameter Overload". A brief description of the Diameter overload problem is given and some details on the existing mechanisms for overload control in Diameter are provided.
2. Proposal

It is proposed to agree the following changes to 3GPP TR 29.809 v0.1.0.
* * * First Change * * * *

2
References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

-
References are either specific (identified by date of publication, edition number, version number, etc.) or non‑specific.

-
For a specific reference, subsequent revisions do not apply.

-
For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same Release as the present document.

[1]
3GPP TR 21.905: "Vocabulary for 3GPP Specifications".

[2]
IETF RFC 6733: "Diameter Base Protocol".

[3]
3GPP TR 23 843: "Study on Core Network Overload Solutions".

[4]
IETF Draft draft-ietf-dime-overload-reqs-05: "Diameter Overload Control Requirements".

Editor's note:
The above document cannot be formally referenced until it is published as an RFC.

[5]
3GPP TS 29.002: "Mobile Application Part (MAP) specification".
[x]
IETF RFC 3539: "Authentication, Authorization and Accounting (AAA) Transport Profile".
* * * Next Change * * * *

5.2
Diameter Overload

5.2.1
Diameter Overload Problem


Diameter (IETF RFC 6733 [2]) is protocol that enables the exchange of messages between Diameter nodes over TCP and SCTP connections. Communicating Diameter nodes can share a direct connection or be connected through other Diameter peers (Diameter agents). In normal conditions, any request sent by a Diameter client will be processed by a Diameter server in a given realm and the Diameter server will send back to the Diameter client a message indicating the result of the request (success/failure).
As described in the IETF Draft draft-ietf-dime-overload-reqs-05 [4], overload situations in a Diameter signaling network occur when the number of incoming requests exceeds the maximum request throughput supported by the receiving Diameter node. Reasons for these temporary overload cases are many and various in an operational network, including: insufficient internal resource capacity of a Diameter node faced with a sudden burst of requests e.g. after network failure/restart procedures affecting a large number of users, deficiency of a Diameter node component leading to a drastic reduction of the overall performances of the Diameter node, etc.
As a consequence of the overload situation, the answering Diameter node cannot successfully process the exceeding proportion of requests. These requests can be either simply dropped or extremely delayed in the processing. At best, the Diameter node may have enough internal resources to send back to the request initiator a message indicating that the requests cannot be successfully processed. Whatever the behavior of the overloaded Diameter nodes, the rate of successfully processed requests and consequently the overall performances of the network decrease. 
5.2.2
Limitations of Existing Mechanisms in Diameter


The base Diameter protocol (IETF RFC 6733 [2]) provides two native mechanisms to explicitly indicate that a server is overloaded.
The first mechanism is to use of the Protocol Error "DIAMETER_TOO_BUSY" in the answer related to the request. This error is used by the Diameter node to explicitly indicate that it is "too busy" to correctly process the request. The associated recommendation is to send the pending request to an alternate peer.

A per the base Diameter protocol, this error only indicates to the client that the pending request should be sent to another peer. Additional information can be found in the "AAA Transport Profile" (IETF RFC 3539 [x]), a standard companion document of the base Diameter protocol, in which is defined the failover mechanism. It is stated in this document that, in case the primary server is busy, the pending requests and all the additional requests should be sent to the alternate peer. It is implicitly assumed that the alternate peer can absorb the extra load of requests and become the primary server for all the requests that would be normally sent to the overloaded server. However there is no guidance on when this transitional period should end and there is therefore no explicit mechanism defined to restore the previous server as primary server when the overload situation is over.
Moreover, in system in which it is not possible to send the pending request or new requests to an alternate peer i.e. only the targeted server can successfully answer to the request, there is no guidance on the client behavior regarding whether the requests should be sent again to the same peer, at which interval and for along time.
The base Diameter protocol (IETF RFC 6733 [2]) enables also an overloaded server to inform a peer of its lack of internal resources for normal request processing by sending a request for transport layer disconnection (Disconnect-Peer-Request) with the disconnect cause set to "BUSY". This mechanism is only meaningful when client and server have a direct transport connection. If an agent is on the path between the client and the server, only this agent will receive the disconnection request. There is no way to propagate this information to the client that has initiated the request: the client behind the agent will only receive the Protocol Error "DIAMETER_UNABLE_TO_DELIVER" (see below). Moreover, the Diameter node receiving this disconnection reason is not expected to attempt reconnection "unless it has a valid reason to do so (e.g., message to be forwarded)", as stated in the base Diameter protocol (IETF RFC 6733 [2]), which provide very few guidance on when to reopen the connection after an overload situation. It seems to be assumed that the overloaded node should be able to reopen the connection after the end of the overload situation… whereas Diameter servers in operational networks are usually configured as connection request responder-only, leading to a deadlock situation.
If the Diameter server is highly overloaded, additional requests are usually simply dropped. In such case, the Diameter client does not receive a clear indication of overload state in the Diameter server. However, the client may suspect overload situation as follow. In case of direct connection between the Diameter client and the Diameter server in the "open" state, absence of answer to a pending request may indicate an overload state in the Diameter server. However, the Diameter client cannot distinguish a problem due to overload from any other possible failure at the application level. Therefore, if the pending request can be retransmitted to an alternate peer (if available), there is no guidance on the behaviour of the Diameter client when new requests have to be sent.
When a Diameter agent (Relay or Proxy) is on the path between the client and the server, the diameter client may receive from the agent the Protocol Error "DIAMETER_UNABLE_TO_DELIVER" as answer to the pending request if the server has terminated the connection with the agent due an overloaded state or if the server does not even respond because the additional requests are dropped. However, this error cause may be received by the client for other error cases (e.g. failure of the transport connection, no entry in the peer table of the Diameter agent), and there is no way for the Diameter client to clearly determine an overload situation using only Protocol Error "DIAMETER_UNABLE_TO_DELIVER". Therefore, the same issue exists about the expected behaviour of the Diameter client for the pending request and the new requests.
As a conclusion, the base Diameter protocol (IETF RFC 6733 [2]) provides very limited mechanisms to detect and overcome overload situations. These mechanisms are based on specific error handling or transport connection management at the server side. The default behaviour of the client relies only on the availability of alternate peers to which offload the requests when the primary server is offloaded. However, these mechanisms are too loosely standardized to predict a generic behaviour of all the Diameter nodes present in the same network in case of overload. For a more sophisticated overload control mechanism, the specification effort is required at the application level. This effort could further detail the use of existing mechanisms for a given Diameter application, by clarifying the expected behaviour of clients and servers in case of overload. Moreover, being at the application level would allow defining new mechanisms to enhance the existing Diameter overload control mechanism.
* * * End of Changes * * * *

