
3GPP TSG CT4 Meeting #47bis
C4-100014
Shenzhen, People's Republic of China,
12th – 14th January 2010
Source:
Alcatel-Lucent
Title:
Pseudo-CR on LDAP Notifications
Spec:
3GPP TS 29.335 v0.2.0
Agenda item:
5.1.2
Document for:
Decision

1. Introduction

This p-CR describes a specification for LDAP based subscriptions and notifications for UDC. This text was elaborated by Unbound Id and Alcatel-Lucent companies. It will be the base for an IETF draft.
2. Reason for Change

LDAP based subscriptions and notifications for UDC are not yet described.

This specification proposal is not specific to the UDC, but aims to address subscriptions and notifications for LDAP servers and clients in general so that it can be accepted by the LDAP community in IETF. It is planned to submit this proposal as an IETF draft.
The proposal addresses some important issues of this notification process that are not specific to LDAP but also may apply for other notification solutions .

· to keep change ordering : if 2 changes happen on the same data in a short time frame, it should be avoided that the 2 notifications modify the change order and induce a wrong update in the destination entity

· to avoid overwhelming situations due to a mass of quasi simultaneous notifications. It explains the introduction of a poll mechanism with a number of maximum changes. But this poll mechanism can be persistent (in a certain limit of time) , so that notifications can happen asynchronously when a change occurs.

· to ensure that after a failure recovery (Server or client), data changes are not lost

This proposal does not consider the acknowledgement mechanism as necessary, as it would raise other issues

· It increases the likelihood that a client will receive duplicate changes. If a client has processed a change but cannot acknowledge it for some reason (e.g., the connection is no longer valid, the server becomes unavailable, or the client encounters an unexpected error)
· If the client has to acknowledge each change, then it will reduce overall throughput because it means that the server will have to wait for the acknowledgment before sending changes
· What special action is the Directory Server suppose to take with the receipt of the acknowledgement ? In particular when the Front end receives a negative acknowledgement from the network entity, it is to the FE application logic to define on how to react , it does not mean to send a negative acknowledgement to the UDR.

· the proposal is using “cookies” to, ensure a good synchronization in the changes
The fact to have a solution not specific to UDC that solves the above issues has the consequences that

· this specification applies to a Front End but not to a cluster.

· the front end should keep the memory of a subscription he did and manage the poll mechanism

3. Conclusions

It has been considered that this LDAP proposal for subscription/ notifications should not be specific to UDC and be accepted by LDAP community and that it should solve some important issues linked to a notification process, even if the cluster approach cannot be used.

Issues to be solved are not specific to LDAP, other solutions for subscription notification should also give answers to these issues.
4. Proposal

It is proposed to agree the following changes to 3GPP TS 29.335 v0.2.0.
When an IETF draft will be available, this text should be replaced by a text referencing this IETF draft.

* * * First Change * * * *

A.3
Proposal for an LDAP Client Subscription Protocol

Editor’s note: the text in this clause is the complete basis for a IETF draft, so containing some subclauses as A.3.2 “Problems with alternative solutions” that are not part of a 3GPP TS. The final TS text will only refer to this IETF draft when its reference will be available.

A.3.1
Introduction
LDAP directory servers are used to store many types of critical data used for a wide range of purposes. Most directory servers include a replication mechanism to ensure that any change made in one instance is applied to all other instances in the topology, but to this point LDAP lacks a reliable way to allow clients to keep up to date with changes that occur to this data as well. While there have been attempts to address this problem in the past, none of them have done so in a suitable manner. This document proposes a new model that can help to address this need.

A.3.2
Requirements
It is first necessary to define the requirements for a client subscription mechanism. Such requirements include:

· It must be possible for appropriately-authorized clients to create and terminate subscriptions over LDAP in a manner that can be supported by any compliant LDAPv3 directory server. Directory servers may also provide a way to create and terminate subscriptions in an alternate manner (e.g., using a configuration interface), but that is outside the scope of this document.

· The subscription information must be persistent so that it can survive the loss of client connections or a directory server restart.

· It must be possible to define criteria for the subscription, so that the client can indicate which types of changes should be included in that subscription. The criteria should include at least the ability to specify the location in the DIT, a filter indicating the types of entries, the types of operations, and a set of target attributes. It should also be possible to determine whether a given operation caused the target entry to transition from matching to not matching (or vice versa) the subscription criteria.

· It must be possible for the client to easily obtain the details of the change that was processed. It is not sufficient to be given access to an updated representation of the entry, although access to this information may be very useful and should be made available to the client. It may be problematic to be able to obtain a copy of the entry before the change was applied, particularly in an environment using a loosely-consistent replication model with multiple servers that may be updated concurrently.

· It must be possible for the subscription to be maintained in a multi-server environment. It should be possible to create a compliant implementation which allows the client to resume a subscription on a different directory server instance than on which it was originally created without missing any changes or receiving any changes more than once.

· If client requests are forwarded through an LDAP proxy server which may sit in front of multiple backend directory servers (which may themselves hold the same or different sets of data), it must be possible for the LDAP proxy server to be implemented in such a way that it can provide support for the subscription mechanism. That is, there must not be anything in the design of the subscription mechanism which precludes its use in an environment containing LDAP proxy servers.

· It must support a polling-only mode in which the client periodically checks for updates but does not rely on the server to provide any notification of new changes.

· It must support a notification mechanism in which the client can request that the server notify it when a matching change has been processed. The notification mechanism must designed so that notifications will only be issued to clients that explicitly request it, and so that it cannot overwhelm the client in the event that large numbers of matching changes are processed over a short period of time. Notification mechanisms without throttling (e.g., persistent search) have been known to cause problems with both LDAP clients and servers if the notifications cannot be consumed quickly enough.

· It must provide support for allowing a single client to access multiple subscriptions concurrently on the same connection.

· It must provide support for allowing multiple clients to access the same subscription concurrently on separate connections, with the possibility of each client at a different point in the subscription.

· It must be possible for the client to receive information about changes in the order that they were processed. There may be cases in which there are dependencies between operations, and problems may arise if the client receives information about changes in an order that was different from the order in which they were originally processed. It is not necessary to ensure that a global order of changes across all servers is preserved, but it should be possible to preserve the order of changes within any given server. If a directory server instance detects a conflict between changes processed concurrently on different instances, then any corrective action taken to restore consistency must also be included in the subscription.

· It must be possible to avoid receiving information about a change multiple times, even if it is necessary for a client to resume a subscription on a different directory server instance than the one with which it was last used. However, it should be possible for clients to retrieve information about old changes that had previously been received (within reasonable constraints to make it possible exhaustion of disk space or other system resources). This capability may be particularly useful if a client has been restored from an earlier backup and may need to re-process some changes.

· It must not require clients to acknowledge changes received from the server, because this can introduce a number of problems. Even when batching is used, requiring acknowledgments can reduce the overall throughput that can be achieved, especially over high-latency networks. It also increases the risk of clients missing changes or receiving duplicate changes in the event that a problem occurs between the time that the server sends a change record to the client and the client is able to process and/or acknowledge that change. The use of acknowledgments would also make it very difficult to support multiple clients accessing the same subscription concurrently, and would make it difficult to allow clients to be restored from backup so that they could re-process older changes if necessary.

A.3.2
Problems with Alternative Solutions

The need for LDAP clients to be able to receive information about changes that have been processed within a directory environment is widely recognized, and there have been a number of previous attempts to provide similar functionality. Unfortunately, none of the existing solutions or proposed solutions meets all of the requirements outlined above. A discussion of problems and limitations with alternative solutions is provided below.

A.3.2.1
Persistent Search

Although it is widely implemented, the persistent search specification defined in draft-ietf-ldapext-psearch was never promoted to RFC status and has not been updated in a very long time. It has been used in the past in an attempt to keep clients up to date with changes in the directory environment, but there are a number of problems that make it undesirable for use in a real-world environment, including:

· A persistent search is only active while the client connection is established. There is no way for a client to obtain information about matching changes that were processed while the persistent search was not active.

· A persistent search does not include any batching or throttling mechanism. There have been many well-known instances in which clients using persistent search have been overwhelmed when they were unable to consume responses quickly enough during bursts of heavy activity. Similarly, there have been well-known instances of servers failing to gracefully handle clients which do not consume changes quickly enough.

· A persistent search does not provide any details about the change that was processed within the server, particularly for modify operations. Although the client may receive an updated representation of the target entry, it is not given any information about the actual change that was applied to the entry.

A.3.2.2
LDAP-Accessible Changelog

The LDAP changelog, defined in draft-good-ldap-changelog, is another example of a specification that is supported by many directory servers but never became an RFC. It provides the ability for clients to retrieve information about changes processed within the server, but it is not well-suited to providing the subscription capability described here, for a number of reasons:

· It does not provide any notification mechanism, so clients must periodically poll the changelog to determine whether there are any new changes to be processed. Some clients have attempted to address this using a persistent search, but this again introduces the possibility that the client may be overwhelmed if entries are returned too quickly during a burst of activity.

· It does not provide the client with a means of easily retrieving information about only changes matching a defined set of criteria. Rather, the LDAP changelog provides information about all changes processed within a server, and the client has to read through all of them and filter out those changes which may be of interest. Further, because the changelog contains only information about the changes that were processed and does not include the entire entry, the client may need to perform a search to retrieve the target entry in order to determine whether it matches the desired criteria.

· It does not define any mechanism that allows it to be used seamlessly in a replication environment with multiple servers that can accept changes from clients. Different instances may use different change numbers for the same changes, and the order in which changes are listed may also differ between instances. Some directory server implementations have devised proprietary solutions for attempting to deal with this problem, but such solutions are not standardized and often require the clients to perform complex processing.

A.3.2.3
LDAP Client Update Protocol (LCUP)

LCUP is defined in RFC 3928., but has not been widely adopted by directory server implementations because it has some heavyweight requirements that make it undesirable. Some of the key problems it has include:

· As with persistent search, LCUP results are only in the form of updated entries. No mechanism is defined which would allow the client to determine the specific change that was applied. However, LCUP is even less useful than the persistent search in this regard because it does not include any indication of the type of change (add, delete, modify, or modify DN) that was applied to the entry.

· Because responses to the client do not include information about changes that were processed, it is not possible for the client to resume a subscription. Rather, the client must first perform a synchronization operation in order to retrieve every entry that matches the subscription criteria before it can begin receiving information about updates. The time and processing required for this on very large directories can be prohibitive, and may require significant resource consumption by the client.

· LCUP requires that the directory server be able to reproduce an entry as it appeared at the time a given change was processed. This can be very expensive for directory servers to be able to generate, potentially in terms of the disk space and/or processing required to obtain that point-in-time version of the entry.

· LCUP does not provide any guarantees about the ordering of changes and explicitly indicates that results may be returned in a different order than they were processed (e.g., the client may receive information about child entries added before information about their parents).

A.3.2.4
LDAP Content Synchronization Operation

The LDAP content synchronization operation is defined in RFC 4533 and is available in more directory implementations than LCUP, although its use is not pervasive. It is similar to LCUP and has many of the same limitations. Issues with using the LDAP content synchronization operation as a way of maintaining a subscription mechanism include:

· As with persistent search and LCUP, the content synchronization operation does not return information about the specific changes that were applied to an entry, but rather only provides access to an updated representation of the entry.

· As with LCUP, it is not possible for a client to resume a subscription on an alternate server. Instead, the client must retrieve a complete set of all matching entries, which may be very expensive.

· As with LCUP, the LDAP content synchronization operation does not make any guarantees about ordering of changes.

A.3.2.5
Subscription/Notification for LDAP

This is a relatively new specification defined in draft-dawkins-ldapext-subnot. It is far too new to have been implemented in any directory server, and it has generally not been favorably received by the LDAP community. This specification is specifically intended to provide the ability to subscribe to changes in a directory environment, but is not well designed to actually provide this capability. The problems with this draft include:

· It relies solely on a notification mechanism, with no capability for the client to control the rate at which changes may be sent. Much like persistent search, this creates a very real possibility that clients may become overwhelmed during periods of heavy changes in which a large number of notifications are received in a short period of time.

· It provides the ability to generate notifications only in response to changes resulting from modify operations. It does not define any mechanism for providing information about add, delete, or modify DN operations.

· Each subscription applies only to a single entry. It is not possible to create a subscription that can encompass multiple entries based on a set of criteria. This means that any client which wishes to be notified of changes to any entry in the directory must create a separate subscription for each entry, and because there is no support for adds it has no way of knowing when new entries are created so that it can define new subscriptions for them.

· It does not provide the ability to obtain information about the actual changes that were made to an entry. It does provide a mechanism for the server to indicate both the previous and new values for a given attribute, but it is not possible to determine what specific operation was invoked (e.g., for a single-valued attribute with an integer syntax, it is not possible to determine whether the change was a replace or increment modification, and for any attribute it is not possible to differentiate between a single replace modification and a combination of add/delete modifications). Further, as previously discussed requiring that the server be able to supply previous values held by an attribute can be problematic in an environment using loosely-consistent replication in which multiple servers are writable at the same time.

· It requires the client to explicitly specify which attributes should be watched. It is not possible to define a subscription that will generate a notification in response to any attribute in the entry.

· It uses the LDAP unsolicited notification message to provide notification messages to clients. This is undesirable because these messages are not associated with any particular request or activity stream, and as a result must be processed by some kind of unsolicited notification handler. This becomes problematic if the directory server also has the ability to use unsolicited notifications for other purposes. It would be far better if the notifications were provided as a response to an explicit client request.

· It appears to provide the ability to send notification messages to clients that did not explicitly request them. The specification is not entirely clear, but it sounds as if it is possible to indicate which clients should receive notifications based on the DN of the user as whom those connections are authenticated. If this is the case, then that is a very dangerous behavior because it implies that the directory server may send notifications to clients that do not expect them and are not prepared to handle them. Some types of clients may not check for data from the server unless they are expecting a response from a request, and attempts to send notifications to such clients may cause the server to block if the client's receive queue and the server's corresponding transmit queue become full.

· Even though it provides the ability to generate persistent subscriptions, it does not provide any mechanism for receiving information about changes that were made to the entries to which those subscriptions apply when the specified client is not connected to the directory server. As such, notifications will be missed if none of the established connections is suitable to receive that notification.

· It requires the client to acknowledge each notification that it receives. The problems with requiring acknowledgments have been previously discussed in this document in the requirements section. Further, the model used in this specification is particularly undesirable because it does not even include a mechanism for batching notifications, nor does it indicate what behavior should be used if the client does not return an acknowledgment in a timely manner.

· It appears that notification of any single change may only be delivered to a single client. If multiple client connections are established which are eligible to receive notifications, then any given notification will only be sent to one of those clients, not to all of them.

A.3.3
The Subscribe Request

An LDAP client may create a subscription using an extended request with an OID of [TBD] and a value in the following format:

SubscribeRequest ::= SEQUENCE {

 baseDN LDAPDN,

 scope Scope,

 filter Filter,

 changeAttributes [0] SET OF LDAPString OPTIONAL,

 returnAttributes [1] SET OF LDAPString OPTIONAL,

 operationType [2] SET OF OperationType OPTIONAL,

 modificationType [3] SET OF ModificationType OPTIONAL,

 multiServer [4] BOOLEAN DEFAULT FALSE,

 expirationTime [5] GeneralizedTime OPTIONAL,

 subscriptionName [6] OCTET STRING OPTIONAL,

 ... }

Scope ::= ENUMERATED {

 baseObject (0),

 singleLevel (1),

 wholeSubtree (2),

 subordinateSubtree (3),

 ... }

OperationType ::= ENUMERATED {

 add (0),

 delete (1),

 modify (2),

 modifyDN (3),

 ... }

ModificationType ::= ENUMERATED {

 add (0),

 delete (1),

 replace (2),

 increment (3),

 ... }

The elements of this request are as follows:

· baseDN -- This specifies the base DN for the subscription. Only changes to entries at or below this entry (in accordance with the scope) will be candidates for inclusion in the subscription. A value equal to the empty string (i.e., a DN with zero RDNs) may be used to indicate that the subscription may consist of changes to any entries anywhere within the DIT. If the provided base DN has one or more RDNs, then it should be located within one of the defined naming contexts within the server (i.e., the server has no obligation to support subscriptions with naming contexts outside of the data it has been configured to contain).

· scope -- This specifies the scope for the subscription. It should be used in conjunction with the base DN to identify candidates for inclusion in the subscription. The scope for a subscription request should be interpreted in the same way as the scope for a search request. That is:

· A scope of "baseObject" indicates that only the entry specified as the base DN may be included in the subscription.

· A scope of "singleLevel" indicates that only entries which are immediate subordinates of the base DN (but not the base entry itself, nor subordinates of those entries exactly one level below the base DN) may be included in the subscription.

· A scope of "wholeSubtree" indicates that entry specified as the base DN, as well as any of its subordinates to any depth, may be included in the subscription.

· A scope of "subordinateSubtree" indicates that any subordinates of the entry specified as the base DN to any depth, but not the base entry itself, may be included in the subscription (as per draft-sermersheim-ldap-subordinate-scope).

· filter -- This specifies the filter for the subscription. Any change targeting an entry that matches this filter (either before or after processing that change) along with all other subscription criteria may be included in the subscription.

· changeAttributes -- This specifies an optional set of attributes for which the client is interested in receiving information about changes. If this set is absent or empty, then any change to any attribute in an entry matching the subscription criteria may be included in the subscription. If this set is present with one or more attribute names (or object identifiers), then only changes impacting one of the named attributes may be included in the subscription. This should be interpreted as follows:

· For an add operation, the entry being added must contain at least one of the specified attributes.

· For a delete operation, the entry being removed must contain at least one of the specified attributes.

· For a modify operation, at least one of the modifications must target at least one of the specified attributes.

· For a modify DN operation, at least one of the specified attributes must be contained in the original or new RDN for the target entry.

· returnAttributes -- This specifies an optional set of attributes whose values should be returned to the client as part of the change record, in addition to other details of the change. This may be used to retrieve other key values in the entry which may be useful even if they were not directly involved in the change. If this set is absent or empty, then no attributes should be returned. If this set is present with one or more attribute names (or object identifiers), then the values of those attributes should be provided as part of the change record. This should be interpreted as follows:

· For an add operation, no special action will be taken because the change record will already include all attributes in the entry that was added.

· For a delete operation, this may be used to request the values that the specified attributes held at the time that the entry was removed.

· For a modify or modify DN operation, this may be used to request the values that the specified attributes held upon completion of the operation.

· operationType -- This specifies an optional set of operation types for changes to include in the subscription. If this set is absent or empty, then all types of operations will be included in the subscription. If this set is present with one or more operation types, then only changes resulting operations of one of the requested types will be included in the subscription.

· modificationType -- This specifies an optional set of modification types for modify operations to include in the subscription. If this set is absent or empty, then any modification type will be included. If this set is present with one or more modification types, then only modify operations containing one or more modifications with one of the specified types will be included. This has no impact on changes for other operation types.

· multiServer -- This may be used to indicate whether the directory server should attempt to create the subscription on multiple servers. If this is absent, or if it is present with a value of FALSE, then the directory server should create the subscription in such a way that it is only available on that one instance. If this is present with a value of TRUE, then the directory server should attempt to create the subscription on other servers in the environment so that the client can use any of those servers to access subscription content.

· expirationTime -- This may be used to indicate that the subscription only needs to remain valid until the specified time. If this is absent, then the directory server should assume that the subscription will remain valid until the client sends an unsubscribe request. If an expiration time is specified, then the client should not attempt to access the subscription after that time, and the server may terminate the subscription once that time has passed.

· subscriptionName -- This may be used to provide an optional, user-friendly name that the client may use to refer to the subscription. If this is provided, then the directory server should consider it a suggestion and may use an alternate name if necessary (e.g., because another subscription is already defined with the same name).

A.3.4
The Subscribe Result

Upon processing a subscribe request from the client, the directory server will return an extended result with information about the status of that processing. If the subscription was successfully created, then the extended result should have an OID of [TBD] and a value in the following format:

SubscribeResult ::= SEQUENCE {

 subscriptionName OCTET STRING,

 resumeCookie OCTET STRING,

 multiServer [0] BOOLEAN OPTIONAL,

 maxRetainedChangeAge [1] INTEGER (1 .. maxInt) OPTIONAL,

 ... }

The elements of the subscribe result value include:

· subscriptionName -- This specifies the name that the directory server has assigned to the subscription. If the subscribe request included a subscription name, then this may or may not match that name (e.g., if the requested name is already in use), although it is suggested that at least a portion of the requested name be used in conjunction with some unique identifier in order to make it recognizable to administrators. In any case, the name provided in the result is the only name that the client should use to refer to the subscription in future requests.

· resumeCookie -- This provides an opaque value which the client must provide to the server on the next poll request. If the directory server supports the ability to use the subscription across multiple servers, then it should be possible to use this cookie on any of the supported servers.

· multiServer -- This indicates whether the subscription was successfully created in such a way that it may be available for use on other servers in the environment. This should only be provided if the multiServer element was included with a value of TRUE in the subscribe request.

· maxRetainedChangeAge -- If present, this value specifies the maximum length of time in seconds that the server will retain information about changes matching the subscription. If a client does not attempt to retrieve change information frequently enough, or if the client falls behind in processing, then the subscription may become invalid if the server purges information about changes processed too far in the past.

The directory server must be prepared to process unsubscribe or subscription poll requests immediately after sending a successful subscribe result.

A.3.5
The Unsubscribe Request

If a client wishes to terminate a subscription, it may do so using an extended request with an OID of [TBD] and a value with the following format:

UnsubscribeRequest ::= SEQUENCE {

 subscriptionName OCTET STRING,

 multiServer [0] BOOLEAN DEFAULT FALSE,

 ... }

The elements of the unsubscribe request include:

· subscriptionName -- This specifies the name of the subscription to be terminated. It should match the value of the subscriptionName element of the subscribe result for that subscription.

· multiServer -- This indicates whether the subscription should be terminated only on the local instance or all server instances on which it has been created.

A.3.6
The Unsubscribe Result

Upon processing an unsubscribe request from the client, the directory server will return an extended result result with information about the status of that processing. If the subscription was successfully terminated, then the extended result should have an OID of [TBD] and a value in the following format:

UnsubscribeResult ::= SEQUENCE {

 subscriptionName OCTET STRING,

 multiServer [0] BOOLEAN OPTIONAL,

 ... }

The elements of the unsubscribe result include:

· subscriptionName -- This specifies the name of the subscription that has been terminated and is no longer valid.

· multiServer -- This indicates whether the subscription was successfully terminated on all servers. This should only be present if the multiServer element was present with a value of TRUE in the unsubscribe request.

A.3.7
The Subscription Poll Request

Whenever the client wishes to retrieve data from the server about changes matching the subscription criteria, it should send an extended request with an OID of [TBD] and a value in the following format:

SubscriptionPollRequest ::= SEQUENCE {

 subscriptionName OCTET STRING,

 resumeCookie OCTET STRING,

 maxResults INTEGER (1 .. maxInt),

 maxWaitTimeSeconds [0] INTEGER (0 .. maxInt) OPTIONAL,

 includeIntermediateCookies [1] BOOLEAN DEFAULT FALSE,

 includeDebugInfo [2] BOOLEAN DEFAULT FALSE,

 ... }

The elements of the poll request include:

· subscriptionName -- This specifies the name of the subscription to be polled. It should match the value of the subscriptionName element of the subscribe result for that subscription.

· resumeCookie -- This provides the last value of the resumeCookie received by the client in any of the appropriate messages returned by the server (subscribe result, subscription change record, or poll result). The directory server must be prepared to retrieve multiple poll requests with the same resumeCookie value (e.g., in the event that a problem prevented a client from properly handling an earlier change record, or if multiple clients are using the same subscription).

· maxResults -- This specifies the maximum number of change records that should be returned for the subscription. The server must not return more than this number of change records before sending the poll result message.

· maxWaitTimeSeconds -- This specifies the maximum length of time in seconds that the client is prepared to wait for results in the event that there are fewer than maxResults unread change records available to be read. The server should immediately send all outstanding changes which are immediately available, up to a limit of maxResults, but if all outstanding change records have been consumed, then this may allow the client to request that the server notify that client of any new matching changes as soon as they are processed. If this is absent or has a value of zero, then a poll result will immediately be returned to the client if there are no more unread change records.

· includeIntermediateCookies -- This indicates whether the server should include the resumeCookie element in change records that are returned. If this is absent or has a value of FALSE, then only the poll result message will include the resumeCookie element. If it is present with a value of TRUE, then each change record should include an updated resumeCookie element, as well as the poll result message after all change records have been returned. Including a resumeCookie value in each change record may reduce or eliminate the need for a client to process the same change multiple times in some cases (e.g., if the client connection is lost after receiving one or more change records but before receiving the poll result message), but may potentially increase the amount of work the server has to do in order to provide an updated cookie value with every change record.

· includeDebugInfo -- This indicates whether change records for changes matching the subscription criteria should include debugging information that may be useful in better understanding the source of the associated change. The server may or may not support providing this additional information. If it is supported, then it should be provided in a human-readable form.

A.3.8
The Subscription Change Record

When the directory server receives a poll request, it may return zero or more intermediate response messages with information about matching changes prior to returning the poll result message indicating that there will be no more results for the provided poll request. The poll change record intermediate response should have an OID of [TBD] and a value in the following format:

SubscriptionChangeRecord ::= SEQUENCE {

 subscriptionName OCTET STRING,

 entryDN LDAPDN,

 changeContent CHOICE {

 addContent [0] AddContent,

 deleteContent [1] DeleteContent,

 modifyContent [2] ModifyContent,

 modifyDNContent [3] ModifyDNContent,

 ... },

 resumeCookie [4] OCTET STRING OPTIONAL,

 changeNumber [5] INTEGER OPTIONAL,

 requesterName [6] LDAPDN OPTIONAL,

 changeTime [7] GeneralizedTime OPTIONAL,

 debugInfo [8] OCTET STRING OPTIONAL,

 ... }

AddContent ::= SEQUENCE {

 attributes PartialAttributeList,

 ... }

DeleteContent ::= SEQUENCE {

 attributes [0] PartialAttributeList OPTIONAL,

 ... }

ModifyContent ::= SEQUENCE {

 changes SEQUENCE OF Modification,

 attributes [0] PartialAttributeList OPTIONAL,

 matchBefore [1] BOOLEAN OPTIONAL,

 matchAfter [2] BOOLEAN OPTIONAL,

 ... }

ModifyDNContent ::= SEQUENCE {

 newRDN RelativeLDAPDN,

 deleteOldRDN BOOLEAN,

 newSuperior [0] LDAPDN OPTIONAL,

 changes [1] SEQUENCE OF Modification OPTIONAL,

 attributes [2] PartialAttributeList OPTIONAL,

 matchBefore [3] BOOLEAN OPTIONAL,

 matchAfter [4] BOOLEAN OPTIONAL,

 ... }

Modification ::= SEQUENCE {

 modificationType ModificationType,

 modificationAttribute PartialAttribute,

 ... }

Elements of the subscription change record value include:

· subscriptionName -- This specifies the name of the subscription with which this change record is associated.

· entryDN -- This specifies the DN of the entry with which the change is associated. For modify DN operations, this will be the original DN for the entry, not the DN that resulted after the change was applied.

· changeContent -- This specifies the content of the change. The format of this element depends on the type of operation that was processed and will be described in more detail below.

· resumeCookie -- This specifies an updated resumeCookie value that may be included in a subsequent poll request to resume the subscription at this point. It should be present only if the client provided a value of TRUE for the includeIntermediateCookies element of the poll request.

· changeNumber -- This specifies the change number of the corresponding change in the directory server's LDAP-accessible changelog, in the format specified in draft-good-ldap-changelog. This may not be available if the directory server does not support this changelog format, or if no such changelog has been configured. If a value is provided, then the client should assume that it is only valid for the directory server instance from which the change record was read, as different directory server instances may use different change number values to represent the same change.

· requesterName -- This specifies the DN of the user that originally requested this change. It may be absent if this information is not available, or if the change did not result from an external client request.

· changeTime -- This specifies the time that the change was processed by the directory server. It may be absent if this information is not available.

· debugInfo -- This provides optional debugging information that may be used to obtain additional details about the change that was processed. This should only be provided if the client provide a value of TRUE for the includeDebugInfo element of the poll request.

As noted above, the changeContent element will be encoded differently for each type of operation. For an add operation, the changeContent element will include:

· attributes -- A list of all attributes in the entry that was added, subject to access control restrictions. Note that this should include all attributes from the entry that the requester has access to read, not only those from the returnAttributes set of the subscribe request.

For a delete operation, the changeContent element will include:

· attributes -- An optional list of attributes from the entry that was removed, subject to access control restrictions. This should only be present if the returnAttributes element was included in the subscribe request, and it should only include the values of the attributes named in that request.

For a modify operation, the changeContent element will include:

· changes -- The set of modifications applied to the target entry, subject to access control restrictions. Note that this should include information about all modifications applied to the entry which the requester has access to read, not only those that impact the attributes mentioned in the changeAttributes or returnAttributes elements of the subscribe request.

· attributes -- An optional list of attributes from the entry, as they appeared at the time the modify operation was completed. This should only be present if the returnAttributes element was included in the subscribe request, and it should only include the values of the attributes named in that request.

· matchBefore -- Indicates whether the target entry matched the subscription criteria before the modify operation was processed.

· matchAfter -- Indicates whether the target entry matched the subscription criteria after the modify operation was processed.

For a modify DN operation, the changeContent element will include:

· newRDN -- The new RDN value for the entry.

· deleteOldRDN -- Indicates whether the old RDN attribute values were removed from the entry.

· newSuperior -- An optional new parent DN for the target entry. This should be absent if the entry was not moved below a new parent.

· changes -- An optional set of additional changes that were applied to attributes other than those appearing in the entry's DN during the course of processing the operation. This may be present if one or more additional attributes were updated (e.g., as a result of internal processing performed by the server).

· attributes -- An optional list of attributes from the entry, as they appeared at the time the modify DN operation was completed. This should only be present if the returnAttributes element was included in the subscribe request, and it should only include the values of the attributes named in that request.

· matchBefore -- Indicates whether the target entry matched the subscription criteria before the modify DN operation was processed.

· matchAfter -- Indicates whether the target entry matched the subscription criteria after the modify DN operation was processed.

A.3.9
The Subscription Poll Result

After all appropriate poll change records have been returned, the directory server will return a poll result message to the client to indicate that the processing for the associated poll request has completed and the server will not return any additional results for that subscription unless the client submits another poll request. The poll result should be an extended result with an OID of [TBD] and a value with the following format:

SubscriptionPollResult ::= SEQUENCE {

 subscriptionName OCTET STRING,

 subscriptionValid BOOLEAN,

 resumeCookie [0] OCTET STRING OPTIONAL,

 moreResultsAvailable [1] BOOLEAN OPTIONAL,

 ... }

The elements of the subscription poll result include:

· subscriptionName -- This specifies the name of the subscription with which this poll result is associated.

· subscriptionValid -- This indicates whether the associated subscription is still valid. There may be several reasons that a subscription may no longer be valid, including: if there is no subscription with the specified name, if the resume cookie attempted to resume at a point in the past for which the necessary data has already been purged, if the subscription has expired.

· resumeCookie -- This specifies an updated resumeCookie value that may be included in a subsequent poll request to resume the subscription at this point. It must be provided unless the subscription is no longer valid.

· moreResultsAvailable -- This indicates whether there are any additional change records for the subscription that are immediately available to be consumed.

A.3.10
Advertising Subscription Support in the Root DSE

If a directory server supports the subscription mechanism defined in this document, then it must advertise that support in the root DSE. In such servers, the following attributes should be used to indicate that support:

· supportedExtension -- If the directory server supports the client subscription mechanism described in this document, then the supportedExtension attribute MUST include the OIDs of the subscribe request ([TBD]), unsubscribe request ([TBD]), and subscription poll request ([TBD]) extended requests.

· supportedFeatures -- If the directory server supports the ability to use client subscriptions across multiple servers, then the supportedFeatures attribute should include an OID. If the supportedFeatures attribute is absent, or is present without this OID, then the client should assume that the directory server does not support maintaining a subscription across multiple server instances.

· clientSubscriptionDefinition -- If the directory server has any defined client subscriptions, then a clientSubscriptionDefinition attribute must be present, and each value of that attribute will be the distinguished name of an entry providing details about that subscription. The format of that entry will be described in the next section.

A.3.11
Subscription Definition Entries

Information about subscriptions defined in the directory server should be made available to clients so that they can potentially identify whether they may be able to make use of an existing subscription rather than creating a new subscription. Each subscription definition entry should have a structural object class of clientSubscriptionDefinition and may contain the following attributes:

· clientSubscriptionName -- Has exactly one value, which is the unique name assigned to the subscription, as provided in the subscriptionName element of the subscribe result. Because it must be unique, it is suggested that this attribute also be used as the RDN attribute for the client subscription definition entry.

· clientSubscriptionBaseDN -- Has exactly one value which is the base DN for the subscription, as provided in the baseDN element of the subscribe request. This must always be present, although it may have a value of the zero-length DN.

· clientSubscriptionScope -- Has exactly one value which is the integer that corresponds to the value of the scope enumerated element of the subscribe request. This must always be present.

· clientSubscriptionFilter -- Has exactly one value which is the string representation (in the format described in RFC 4515) of the filter element of the subscription request. This must always be present.

· clientSubscriptionChangeAttribute -- Has zero or more values, each of which is the name or OID of an attribute for which the client is interested in receiving information about changes. Each value of this attribute should correspond to a value in the changeAttributes set of the subscribe request. This attribute may be absent if the changeAttributes element was not present in the subscribe request or was present but did not have any values.

· clientSubscriptionReturnAttribute -- Has zero or more values, each of which is the name or OID of an attribute whose values should be returned to the client as part of a change record. Each value of this attribute should correspond to a value in the returnAttributes set of the subscribe request. This attribute may be absent if the returnAttributes element was not present in the subscribe request or was present but did not have any values.

· clientSubscriptionOperationType -- Has zero or more values, each of which is an integer that corresponds to an enumerated value in the operationType set of the subscribe request, indicating the types of operations in which the client is interested. This attribute may be absent if the operationType element was not present in the subscribe request or was present but did not have any values.

· clientSubscriptionModificationType -- Has zero or more values, each of which is an integer that corresponds to an enumerated value in the modificationType set of the subscribe request, indicating the types of modifications in which the client is interested. This attribute may be absent if the modificationType element was not present in the subscribe request or was present but did not have any values.

· clientSubscriptionExpirationTime -- Has at most one value, which will be a generalized time representation of the time that the subscription will expire, corresponding to the value of the expirationTime element of the subscribe request. This attribute may be absent if the subscribe request did not contain an expirationTime element.

· clientSubscriptionCurrentResumeCookie -- Has exactly one value, which is a value which may be provided in the resumeCookie element of a subscription poll request in order to start receiving information about changes made beginning at the current time. This may be useful for clients which wish to make use of an existing subscription rather than creating their own, or for clients which have been disconnected (or simply not polled) for a period of time and do not require information about changes that occurred while the client was not polling for changes.

The directory server must not allow clients to modify subscription definition entries in any way. Some server implementations may wish to allow clients to add or delete client subscription definition entries (e.g., so that subscriptions can be created or terminated by administrative tools), but LDAP clients should generally not assume that these operations will be allowed and should treat these entries as read-only.

A.3.12
Operation in a Multi-Server Environment

As previously mentioned, the subscription mechanism must include support for operating in a multi-server environment so that the client can resume a subscription on a different server than the one on which it was created. This makes it possible for the subscription to be used in a highly-available manner without missing or duplicating any changes.

It is highly desirable to allow subscriptions to be created and terminated by LDAP clients, but it is not feasible to allow clients to explicitly specify the servers on which the subscription should be created, nor for the directory server to indicate to the client the additional servers on which the subscription was created. Reasons for this include:

· In some environments, individual directory server instances may not have direct knowledge of other instances in that environment, but depend on an external mechanism for managing inter-server communication for purposes like replication or data synchronization.

· In many environments, clients may not know about or be able to directly access individual directory server instances. Access to backend servers is often abstracted using a mechanism like a hardware load balancer, round-robin DNS, or TCP or LDAP proxy.

· In complex network environments, the network routes that directory server instances may use to communicate with each other (e.g., for the purpose of replication) may be different from the routes that clients may use to communicate with those instances. Similarly, directory server instances may communicate with each other using non-LDAP protocols, or using security or authentication mechanisms that may not be available to clients. In such cases, even if the server provided the client with information about alternate servers that may be used, the client may not be able to access those servers using the provided addresses and/or ports.

Because of the complexity of working in such environments, some directory server subscription implementations may support only single-server operation such that a subscription may only be created on a single instance. In such cases, if a client sends a subscribe request with the multiServer element present with a value of TRUE, then the subscribe result message should include a multiServer element with a value of FALSE.

In directory server implementations that do support operation in a multi-server environment, the mechanism for communicating subscriptions across multiple server instances is outside the scope of this specification. Implementations are free to provide this capability in any manner they see fit. Some possible approaches may include:

· The client subscription definition entries may be stored in a replicated portion of the DIT so that any change which creates or terminates a subscription will be replicated to all other servers in the topology.

· Each directory server may be explicitly configured with information about other servers on which subscriptions should be managed, including details about how to connect and authenticate to those servers.

· If client requests are transmitted through an LDAP proxy server, then that proxy server may be designed with specific support for maintaining subscriptions across multiple instances. In such cases, when a subscribe or unsubscribe request is received by the LDAP proxy, it may be automatically forwarded to all appropriate backend servers.

