
3GPP TSG CT WG4 Meeting #41
C4-083621

Shanghai, People's Republic of China, 9th – 14th November 2008

was C4-083581 which was C4-083215

Source:
Ericsson, TeliaSonera

Title:
Pseudo-CR on Pseudo-Code S-NAPTR

Spec:
3GPP TS 29.303 v1.1.0

Agenda item:
6.1.8

Document for:
Decision

1. Introduction

The primary purpose of this CR is to give sufficient information to have an unambiguous implementation of the DNS procedures based on RFC documentation. This is handled in a new pair of Annex.

Annex X.1 is normative and details small miscellaneous DNS RFC conformance details.

Annex X.2 is normative and details some detailed conformance details for RFC 3958 S-NAPTR procedures. This text was required due to ambiguous text in RFC 3958 section 2.2.5 when handling multiple protocols. This clarifies that text and gives a well defined behavior compatible with RFC 3958.

Annex Y.1 is informative and modifies the Pseudo-Code from RFC 3958 Appendix A.1 to clearly indicate the clarifications made in Annex X.2 regarding RFC 3958 section 2.2.5 to an implementer. Annex Y.2, and Annex Y.3 are informative sections giving guidance for implementers in the form of Pseudo-Code as well as assisting in the description in Annex Y.4.

Annex Y.4 is informative and not strictly RFC related but details how the non-standard "topon" parameter ordering introduced in an earlier CR on 29.303 interacts with the RFC 3958 S-NAPTR ordering.

2. Reason for Change

The ordering of DNS records using topon and topoff is a 3GPP TS 29.303 specific feature introduced in a CR earlier this year. While simple enough to understand separately it is not clear to an implementer how the DNS ordering from S-NAPTR procedure should be used with "topon" ordering at the same time with the existing text.

Since such ordering is used to route traffic based on the operators intended policies. This would mean that operators would not be able to direct traffic preferentially with DNS records to the correct server or service as they intended.

There are also issues with RFC 3598 section 2.2.5 for S-NAPTR multiple protocol handling and handling of the preference field in RFC 3958 that should be clarified. To resolve/clarify these issues and to provide sufficient guidance to implementers a new pair of Annex were created for all RFC related issues of that type.

3. Conclusions

4. Proposal

It is proposed to agree to the following changes to 3GPP TS 29.303 v1.1.0 (from C4-083172)

* * * First Change * * * *

2
References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

· References are either specific (identified by date of publication, edition number, version number, etc.) or non‑specific.

· For a specific reference, subsequent revisions do not apply.

· For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same Release as the present document.

[1]

3GPP TR 21.905: "Vocabulary for 3GPP Specifications".

[2]

IETF RFC 1034:"DOMAIN NAMES - CONCEPTS AND FACILITIES".

[3]

IETF RFC 1035:"DOMAIN NAMES - IMPLEMENTATION AND SPECIFICATION”.

[4]

3GPP TS 23.003: "Numbering, addressing and identification".
[5]

GSMA PRD IR.67 – "DNS Guidelines for Operators" Version 2.1.0.

[6]

IETF RFC 3596: "DNS Extensions to Support IP Version 6".

[7]

IETF RFC 3403: " Dynamic Delegation Discovery System (DDDS) Part Three: The Domain Name System (DNS) Database".

[8]

IETF RFC 2782: "A DNS RR for specifying the location of services (DNS SRV)".

[9]

IETF RFC 3958: "Domain-Based Application Service Location Using SRV RRs and the Dynamic Delegation Discovery Service (DDDS)".

[10]
IETF RFC 3401: "Dynamic Delegation Discovery System (DDDS) Part One: The Comprehensive DDDS".

[11]

3GPP TS 23.401: "GPRS enhancements for E-UTRAN access ".

[12]
3GPP TS 25.413: "UTRAN Iu interface RANAP signalling".
[x1]

IETF RFC 2671: "Extension Mechanisms for DNS (EDNS0)"
[x2]

IETF RFC 3402: "Dynamic Delegation Discovery System (DDDS) Part Two: The Algorithm".

* * * Next Change * * * *

Annex A (Informative):
Examples
Editor’s note: This annex will contain examples of various EPC node discovery and selection procedures.
Annex X (Normative):
DNS procedures clarifications
X.1 DNS RFC procedures general clarifications
This sub-clause clarifies DNS resolver use of the S-NAPTR procedures in EPC core network nodes.
NOTE:
The only EPC core network nodes identified explicitly at this time that employ S-NAPTR procedures are the MME and Release 8 SGSN.

DNS resolvers in EPC core network nodes shall support recursive queries and responses over UDP transport as specified in IETF RFC 1035 [3]. The EPC core network nodes may assume the existence of a local caching DNS server (see GSMA PRD IR.67 [5]) and hence may not need to do iterative queries as specified in IETF RFC 1035 [3]. However, the final deployment decision of local caching DNS servers is up to the operators. It is recommended that the EPC core network nodes support DNS queries and responses over TCP transport up to the 65535 byte maximum. Support of IETF RFC 2671 [x1] (EDNS0) is recommended, in order to allow DNS response packets sizes over 512 octets when using UDP transport.
It is recommended that resolvers in EPC core network nodes cache frequently used DNS queries in order to lower load on DNS infrastructure.
EPC core network nodes shall support SRV records as specified in IETF RFC 2782 [8]. However, in the 3GPP scope the ordering of SRV records of the same priority SHALL use the algorithm described in IETF RFC 2782 [8] page 4 instead of the the “SHOULD” requirement in the IETF RFC. This is a 3GPP specific requirement to strengthen the described algorithm and actually allow predictable behavior of the IETF RFC 2782 [8] based load balancing.
X.2 DNS procedures 3GPP clarifications on S-NAPTR (normative)

IETF RFC 3958 [9] S-NAPTR procedures are unmodified with an exception of the following clarifications on the topological closeness and multi-protocol support:
1)
For topological closeness the "topon" label matching of subclause 4.3.2 of the present document takes precedence over NAPTR ordering but NAPTR ordering is still used when matching label lengths are equal. Therefore, a full list of "candidate" records is needed as sketched in Appendix A.2 of IETF RFC 3958 [9], which in turn requires "backtracking" as described by IETF RFC 3958 [9] section 2.2.4.

2)
IETF RFC 3958 [9] has an ambiguity for S-NAPTR with multiple protocols in last paragraph of section 2.2.5
"It MAY choose to run simultaneous DDDS resolutions for more than one protocol, in which case the requirements above apply for each protocol independently. That is, do not switch protocols mid- resolution."
The term " simultaneous DDDS resolutions" and "apply for each protocol independently" are not defined and can have different meanings. To resolve that ambiguity in S-NAPTR, the present document formally defines "Service description meeting the client requirement" from IETF RFC 3402 [x2] section 3.3 step 4 as a NAPTR record with one or more of the 3GPP desired service and protocol field pair(s) and such that all ancestor NAPTR records in the current path to this point also include the identified service and protocol in the DDDS procedure. The present document uses that as the definition of "simultaneous DDDS resolutions". See subclause Y.1 for more practical information on this point.
Items 1) and 2) impact the ordering of DNS records and in which they are returned by the S-NAPTR procedure. Items 1) and 2) also involve areas where the IETF RFC 3958 [9] only provides a sketch of the procedures needed and implicitly relies on IETF RFC 3402 [x2] for details. To clarify these points as well as to guide implementations informative pseudo-code is provided in subclauses Y.1, Y.2 and Y.3.
Annex Y (Informative):
DNS Pseudo-Code
Y.1 S-NAPTR procedure base pseudo-code
The primary purpose of this section is to show practically any differences that are normatively documented in subclause X.2. The changes to the pseudo-code make this much clearer and self-contained than the normative text from subclause X.2..

The pseudo-code immediately following is the pseudo-code from IETF RFC 3958 [9] Appendix A.1 modified to incorporate the clarifications from subclause X.2.

 target = [initial domain]
; Next line is changed from Appendix A.1 of RFC 3958
 usable-service-protocol-set = [initial desired service and protocol pairs]
naptr-done = false
 while (not naptr-done)
 {
 NAPTR-RRset = [DNSlookup of NAPTR RRs for target]
; Next line is changed from Appendix A.1 of RFC 3958
 [sort NAPTR by ORDER, and by PREF within each ORDER and by random order within each PREF]
 rr-done = false
 cur-rr = [first NAPTR RR]
 while (not rr-done)
; Next three lines are changed from Appendix A.1 of RFC 3958
 compatable-service-protocol-set =[[usable-service-protocol-set] set intersection with
 [SERVICE field of cur-rr]]
 if ([compatable-service-protocol-set] is not empty)
 rr-done = true
 target= [REPLACEMENT target of NAPTR RR]
; Next line is changed from Appendix A.1 of RFC 3958
 usable-service-protocol-set = [compatable-service-protocol-set]
 else
 cur-rr = [next rr in list]
 if (not empty [FLAG in cur-rr])
 naptr-done = true
 }
port = -1
 if ([FLAG in cur-rr is "S"])
 {
 SRV-RRset = [DNSlookup of SRV RRs for target]
; Next line is changed from Appendix A.1
[Sort SRV RRset using the algorithm described on page 4 of IETF RFC 2782 [8]]
 target = [target of first RR of SRV-RRset]
 port = [port in first RR of SRV-RRset]
 }
 ; now, whether it was an "S" or an "A" in the NAPTR, we
 ; have the target for an A record lookup
; Remaining lines are changed from Appendix A.1 of RFC 3958

 ; or AAAA record lookup

 IPv4_hosts = [DNSlookup of A RRs for target]
 IPv6_hosts = [DNSlookup of AAAA RRs for target]
 randomized order of IPv4_hosts and IPv6_hosts
 hostname = [target]
 return (hostname, usable-service-protocol-set, IPv4_hosts, IPv6_hosts, port)
The significant differences in the above Pseudo-Code and the IETF RFC 3958 [9] Pseudo-Code are :
A)
[Sort SRV RRset using the algorithm described on page 4 of IETF RFC 2782 [8]]
which was changed from
[sort SRV-RRset based on PREF]
The Pseudo-Code in IETF RFC 3958 [9] simply has an error. There isn't even a PREF in a SRV record. Again see page 4 of IETF RFC 2782 [8] for the proper procedure.
B)
IETF RFC 3958 [9] Appendix A.1 starts with "Assuming the client supports 1 protocol for a particular application" so the pseudo-code obviously was designed for one protocol at a time. The lines with usable-service-protocol-set and compatable-service-protocol-set above are the most important change to support multiple service/protocol combinations and are really the primary reason for providing the above Pseudo-Code.
There are two possible ways to interpret the last paragraph of section 2.2.5 of IETF RFC 3958 [9] when a list of multiple services/protocols is desired. One is the above interpretation using "set intersection" which allows multiple services/protocols. The other is to run the above procedure for one service and protocol at a time from the "desired service_and_protocol_set" and get a separate list for each service and protocol. In both approaches the relative ordering within a particular service and protocol is identical. If the proper interpretation of IETF RFC 3958 [9] is one service and protocol at a time, then the IETF RFC 3958 [9] does not define order between different service or protocols. Thus 3GPP is free to order between different 3GPP service and protocol types so long as the order within a service and protocol is respected. The above method does respect the order within a service and protocol therefore it is valid in either interpretation of section 2.2.5 of IETF RFC 3958 [9] and also valid in IETF RFC 3402 [x2]).

The remaining changes in Pseudo-Code above are minor and mostly intended to show that the S-NAPTR procedure logically outputs following:
(hostname, usable-service-protocol-set, IPv4_hosts, IPv6_hosts, port)
where the returned hostname is the FQDN of the topologically aware node name with topon/topoff and interface information.
In the 3GPP scope, a full implementation of RFC 3958 SHALL implement "backtracking" as described by IETF RFC 3958 [9] section 2.2.4 as required in subclause X.2.

For simplicity of the presentation in this Annex we assume a full IETF RFC 3958 [9] implementation with a call back interface as described in Appendix A.2 of the IETF RFC 3958 [9].
procedure S_NAPTR_to_callback(targetFQDN,

 desired_service_and_protocol_set,
 call_back_function)
where the call_back_function has interface
call_back_function (hostname, usable_service_and_protocol_set, port, IPv4_list,IP6_list)
The call_back_function returns "stop" if it does not want more records otherwise it returns "looking" and will be called with the next record.

Y.2 S-NAPTR procedure - no topon

If topological closeness is not used or all node names are prefixed with "topoff", then the first interface that can be successfully connected to would be sufficient to be returned from the S-NAPTR procedure.The following pseudo-code shows how the procedure works.
/*
 * The Callback function called from the S-NAPTR procedure
 * for each FQDN the S-NAPTR procedure finds..
 */
procedure try_to_connect (hostname, service_and_protocol_set, port, IP4_list, IP6_list)
 Begin procedure
// Comment does procedure as outlined in Y.1
 Use 3GPP procedures to try to connect in turn to all combinations
 of the service/protocols and IP addresses provided in the input.
 Upon first success return(stop);
 If all fail return(looking);
 End procedure;
};
/*
 * The S-NAPTR procedure follows
 *
 */
procedure connect_first_match (targetFQDN, desired_protocol_set)

 Begin procedure
 status:=S_NAPTR_to_callback(targetFQDN,

 desired_service_and_protocol_set ,

 try_to_connect);
 if status equals looking return(failure) else return(success);
 End procedure;
Y.3 S-NAPTR procedure candidate list

The following procedure will get the complete candidate list. This is the "sorted list of matches" described in Appendix A.2 of IETF RFC 3958 [9]. This is used for an exhaustive search of all matches.
If the "topon" feature is used to find "close" nodes then the simple approach of getting the first match as described in subclause Y.2 cannot be used. The S-NAPTR must be performed by exhaustive searching for all matching records since the best match by "topon" node name can be any record independent of S-NAPTR record ordering.
/*

 * The Callback function called by the S-NAPTR procedure for

 * each found match..

 */

procedure private_store_candidate_list (hostname,service_and_protocol_set, port,IP4_list,IP6_list)

 Begin procedure

 increment snaptr_output_order;

 create structure with fields

 (hostname, service_and_protocol_set,port,IP4_list,IP6_list,snaptr_output_order,List_Name)

 add structure to end of candidate_list;

 return(looking);

 End procedure;

/*
 * The procedure to find all candidate nodes.
 *
 */
procedure get_candidate_list (targetFQDN, desired_service_and_protocol_set, List_Name)
 Begin procedure
 candidate_list:= empty;

 snaptr_output_order:=0;

 /*

 * The S-NAPTR resolving starts here.

 */

 status:=S_NAPTR_to_callback(targetFQDN,
 desired_service_and_protocol_set ,
 private_store_candidate_list);
 return(candidate_list);
 End procedure;
The procedure includes the NAPTR output ordering explicitly as a field with each record which is important in the context of "topon" matches and checks for co-located nodes.
Y.4 S-NAPTR procedure pseudo-code with topon

Topological ordering takes precedence over S-NAPTR ordering. However, S-NAPTR ordering is used for ordering nodes with equivalent topological distances. Pseudo code below is informative and shows how to implement the ordering of record selection.
Assume two distinct types of nodes "A" and "B" are being checked for closeness and the best record pair is needed. First step, which is documented in each case in the main text of this document is to get two candidate lists using a procedure such as that outlined in subclause Y.3.
 candidate_list_A:= get_candidates (targetFQDN_A,desired_service_and_protocol_set_A, "A");

 candidate_list_B:= get_candidates (targetFQDN_B,desired_service_and_protocol_set_B, "B");
As an example take the selection of a PGW and SGW by an MME during a UE initial attach procedure. Both a PGW and SGW need to be selected and if "topon" is used in both lists the selected pair is to be as close as possible (collocated being the closest).
Sometimes one list in the procedure is not found by DNS (or was found previously) because the node was already selected. In that case, one of the candidate lists can be just one node.
For example, an UE with an existing PDN connection adds a new PDN connection to a different APN, which may result in a different PGW but needs to continue using the current SGW. Here one of the two candidate lists would just be the data for the current SGW node (i.e., its node name and whether it supports GTPv2 and/or PMIPv6 for S5/S8).
procedure topo_matching (candidate_list_A,candidate_list_B)
 Begin procedure
 paired_sets_list:=empty;
 from number_labels_to_match:= maximum number_of_DNS labels down to 0 do
 Begin do
 if number_labels_to_match equals 0 then
 Begin if
 total_list:= candidate_list_A and candidate_list B

 else
 total_list:= get all records from candidate_list_A and candidate_list_
 with "topon" as first label and hostname has at least
 (number_labels_to_match+2) labels
// Comment: Add 2 since the first two labels are not part of the node name
 End If;
// Comment: Below suffix is a hostname chopped off to include only the last number_labels_to_match
 Foreach unique suffix from total_list do
 Begin foreach
 Foreach servce and protocol do
 Begin foreach
 full_match_list:= get all records from total_list with service and protocol
 and suffix contained in end of the hostname
 If there is at least one "A" record and one "B" record in full_match_list then

 Begin If
 degree:=number_labels
 create structure with fields

 (degree, suffix,service_and_protocol,full_match_list)

 add that structure to paired_sets_list

 End If

 // do same for colocated nodes treating it as very high degree
 full_match_list:= get all records from total_list with service and protocol

 and suffix matching hostname excluding first two labels

 If there is at least one "A" record and one "B" record in full match_list then

 Begin If
 degree:=256
 create structure with field

 (degree, suffix,service_and_protocol,full_match_list)

 add that structure to paired_sets_list

 End If

 End foreach
 End foreach
 End do
 sort paired_sets by degree
 return (paired_sets_list)
 End Procedure;
NOTE 1:
Matching co-located nodes get a degree of 256, which is above any normal match. Also the above procedure is specific to this document and is not a part of S-NAPTR.
NOTE 2:
Order from S-NAPTR is from one S-NAPTR procedure. There is no meaningful order obtained from S-NAPTR between records from two different S-NAPTR procedures. So one node type will be selected "logically first" based on other criteria outside S-NAPTR information.

The above procedure simply creates a list of records which are sorted by decreasing degree of matching in DNS labels. It also gives the list of paired nodes with the same suffix and compatible service which is needed by the 3GPP application.
Since highest degree is preferred over S-NAPTR ordering with "topon" labels the selection is done by degree starting with the highest degree obtaining only the possible "A" and "B" nodes at that degree. A sublist of the paired_sets_list containing the highest degree is taken from paired_sets_list denoted as degree_sublist. Assume the "A" node is to be selected "logically first". Sort the "A" parts of degree_sublist in increasing "snaptr_output_order". For the records in that order try to connect to the node with the service and protocol in the record using 3GPP procedures. On failure proceed with the next record. When that degree_sublist is exhausted then degree-1 is tried and so on until an "A" node is selected. Once an "A" node is chosen, the procedure has also a selected degree, suffix and service.
NOTE 3:
The remaining part of this procedure is not needed if the "B" node was already pre-selected outside the present procedure.
Taking the degree_sublist used to select the "A" node create a new sublist from only records with the same service, same protocol and suffix. Remove the "A" node records from that sublist. Sort this new sublist by increasing "snaptr_output_order" (see subclause Y.3). Using the records in that order try to connect to the "B" nodes with the service and protocol in the record. On a failure proceed with the next record. When that list is exhausted the procedure continues in next paragraph.
NOTE 4:
 The suffix of the "A" node that was selected influences which "B" nodes are closest to it. We can't easily and simply reuse the above structure for that reason and it is easier to "reset" the procedure..
A new candidate_list_A is created consisting only of the selected "A" node A and service_and_protocol. The procedure "topo_matching " is run again giving a new paired_sets_list. The "A" node records are removed from the new paired_sets_list leaving only "B" nodes. Sort the records in paired_sets_list in decreasing order of degree and within degree in increasing "snaptr_output_order" (see subclause Y.3). Using the records in that order try to connect to the "B" nodes with the service in the record. On failure go to next record.
NOTE 5:
Failing to actually contact a node should result in the failing node(s) to be removed from consideration for a period of time. Such removal is not detailed above. Also a reasonable implementation would give up after some maximum number of failed attempts.
