
3GPP TSG CT WG4 Meeting #40
C4-082601
Phoenix, USA, 6th – 10th October 2008

Source:
Ericsson
Title:
Partial Node Fault Handling
Spec:

Agenda item:
6.1
Document for:
Discussion
1. Introduction
Partial node failures are not yet handled in GTPv2 (or PMIPv6) in the core network nodes (SGW, PGW, MME) in a general and efficient manner. This contribution provides a relatively robust and efficient method to handle such partial node failures. This proposal uses Session Set IDs (called Resource IDs in much earlier proposals)
The current discussion paper focuses primarily on the real network problems that needs to be addressed their impact on signalling load and how the Session Set ID's reduce the signalling load while still handling partial node faults..
2. Reason for Change
The EPC nodes (SGW,PGW and MME) will be carrying a huge number of PDN connections. When a fault occurs that impacts a significant fraction of PDN connections, but does not impact the majority of PDN connections, it is clearly undesirable to clear all the valid PDN connections in such a situation since that is a major impact on retainability of PDN connections. Instead only the impacted PDN connections should be cleared on peers. However, individually signalling this is also a major problem due to the volume of traffic. The "Session Set ID" fixes this issue as well as issues when such signalling is impossible.

Component faults general comments

One statement often made is that all vendors will have fully redundant hardware and fully redundant links. Hence, hardware component faults will not occur often enough to be concerned with.
Assume a node consists of board pairs where every "pair" is a master/slave with the slave having the masters data replicated on a real time basis

Assume one board in a mated pair fails and an alarm is raised. A repair order is issued. A few hours later someone arrives misreads the board label and pulls the good PDN connection board in the pair instead of the bad board. The data and services on the mated pair is now gone due to human error.
This specific double failure might be considered too unlikely to worry about. However, double faults can occur for other reasons. An electrolytic capacitor can explode damaging the board and its neighbor. Backplane pins can be damaged when the board is replaced (shorting the adjacent board). Double link failures are actually fairly common. Common causes for double link failures include construction work/digging near the site cutting all cables in a bundle, severe weather knocking a microwave link tower out, core IP network failures due to natural disasters, core IP routing faults due to human error, faulty or misconfigured firewalls and so on. The node or network can also be misconfigured.

However, this issue cannot be ignored even if every effort is done to have redundancy at all points inside an operators network and avoiding all accidents. Suppose just some other operator chooses not to buy mated pair hardware to reduce their cost . That is not just an internal decision that impacts just that operator. Consider that operator as your roaming partner. Now their PGW, SGW or MME has a single board hardware failure impacting say 20% of 200000 PDN connections that go to their network. Now there are 40000 PDN connections in your network that are impacted by that board failure that need to be cleared. Without redundancy in their network it is no longer an unlikely event it will occur on a regular basis. Specifically assume each board has a 10 year MTBF and assume there are 200 boards in their network without redundancy. That translates into a partial node fault every 18 days for that operator.
Generally a system is no better than its weakest link.

Replicated hardware does not increase software reliability, software faults generally exist on both mated pairs. Replicated hardware does not fix defects in base protocols either (i.e. race conditions and so on). Failover to a mated pair also can fail due to software faults.
Partial node (component) faults are genuine network level events that cannot be eliminated (only their frequency reduced).

In the examples that follows we describe systems with single boards but those could really represent double hardware faults in a mated pair, a software fault, or faults in a roaming partner's network that are on their non-redundant systems.
We discuss several representative scenarios to illustrate the problems.

Scenario 1: MME complete node failure .
Let us assume an MME has 5 Million concurrent PDN connections and 80% of the PDN connections are within the operators own network and 20% goes to 5 roaming partners. That means 4 Million PDN connections will go to the operator's own PGW from that MME and on average about 200000 PDN connections go to each roaming partner. Assume the operator has 10 PGW and 40 SGW. Each of the operator's own PGW on average have 400000 PDN connections that are controlled by that MME and each of the SGW on average have 100000 PDN connections that are controlled by that MME. Of course, some nodes will have more than the average and some nodes will have less.
Assume the MME node completely dies (not restarted but dead) . Reason might be a fault, accident, natural disaster physically damaging the MME node or its links to the outside world.
Yes this is a full MME node fault but it illustrates the imporant details without getting into implementation specific issues (though see Scenario 2 for why it is also an SGW partial node fault).
What is the best that can be hoped for with the current mechanisms?
Hopefully, each SGW will detect that the S11 interfaces are unavailable to the MME. Probably as a result of GTP Echo request not getting GTP Echo response over the S11 interface. After the SGW detects that the MME appears unreachable the SGW can clean up the SGW's own internal resources for those 100000 PDN connections.

This does not help the PGW however. The SGW can have two basic approaches to tell the PGW.
A) Each SGW just marks the PDN connections as "bad" and lets the PGW slowly discover the bad connections "naturally" when the PGW tries to send downlink user plane data (or control plane for cases where PCC makes a change to the QoS). This may take hours to clear most records. This option is really not desirable since some services will be charged per minute of use resulting in overbilling in the PGW so SGW charging records would have to be used. Situation is actually much worse for roaming. The SGW charging records will be out of sync with the PGW's charging records and each PDN connection will be out of sync for different durations. This may lead to major conflicts between the two operators on which charging record should be used for billing. Please note that these invalid PGW connections will be impacting the PGW's usable PDN connection capacity so the MME/SGW owning operator may very well have to pay penalties to the PGW owning operator since it is a very real impact to the PGW's available capacity.
B) Each SGW sends Delete Session Requests. For our example an average 100000 Delete Session Requests for each SGW. Each PGW in the operators own network will receive on average 400000 Delete Session Requests and each roaming network will get 200000 Delete Session Requests. Obviously this has significant CPU load impacts on the SGW and PGW just to create and parse the GTPv2 messages including the PGW in the roaming partner's networks. Say a PGW can handle 500 Delete Session Requests per second it will take 800 seconds to clear the operators PGW. However, to actually avoid overload in the PGW (and SGW) the sending rates of the messages from the SGW must be throttled. Specically, the Delete Session Requests will swamp out normal traffic unless a proper throttle is built in (maximum window in the GTPv2 sequence number is not enough since its not selective on message type).
Please note it is currently not possible for the SGW to indicate to the PGW that the MME is not working with a single message. Assume a new message on S5/S8 were created to address that which is possible. Then each SGW could indicate that the MME was not responding. However, the fact is the PGW data structures for PDN connections do not store which MME is being used for a PDN connection so the data is not usable even if the PGW received this new message. Neither is such information currently given to the PGW.

Fixing this lack of information for recovery is the key to what we are proposing with Session Set IDs but it is not limited to just giving the MME's identity (but as this example shows the MME's identity is very important).
Scenario 2: MME complete node failure.

This is exactly the same scenario as Scenario 1.

However, this time let us view it just a bit differently. All the SGW normally sees when an MME goes completely dead is an S11 link failure. A dead SGW might look exactly the same as dead IP backbone router or when the IP return path from the MME is blocked by a firewall and the MME is actually working perfectly. The SGW might also be misconfigured. In fact there may be other SGW that do have working S11 paths to that MME. The MME might not really be dead. The only way the SGW can be sure the MME really died or not is if the SGW gets that information in a later message from the MME itself (i.e. restart counter changed or didn't change). .
S11 link failure to the MME from the SGW can be viewed by the SGW as a "local" fault in the SGW. I.e. it’s the S11 link "component" that failed in the SGW. One S11 link going down definitely does not constitute the entire SGW going down and it does not necessarily mean the MME went down either. Hence, this is an example of a partial node fault in the SGW. Perhaps an artificial example but still a valid one.
Scenario 3: MME PDN connection board failure .

Same assumptions as in Scenario 1 in terms of PDN connections. However, the MME node is a multiprocessor system.
Assume two CPU board handle the S11-GTPv2 and S1-MME signalling and holds only transaction level data (i.e. transient data). Assume there are another set of 4 CPU boards where each board has about 1/4 of the PDN connection table data.
Assume one board fails holding the PDN connection table data. Now 1/4 of all PDN data are now permanently lost on that MME. This is a clear example of a partial node fault.
First, about 3/4 of the PDN connections are intact since the MME has those on the remaining 3 PDN boards (3 Million connections to PGW in the same network and about 750000 to other networks). We obviously don’t' want to clear these valid PDN connections if we have a choice since they are working and generating revenue.

Second, it was a PDN board that failed that held PDN connections. The MME is NOT in a position to signal to the SGW each PDN connection that needs to be cleared since the MME just lost the needed data and that is the fault. So we don't even get the option of sending 1 Million individual Delete Session Requests from the MME to the PGWs in same network and another 250000 to the roaming partners networks.
Futhermore, this is not a GTPv2 path failure the board handling the S11-GTP is doing just fine on the GTP path level., GTP echo is working fine.
We have over 1 Million hung PDN connections on the PGW and SGW. Only very gradually when TEID are not found in the MME during GTPv2 messages from the SGW to the MME will the PDN connections be found out as being hung and cleared in the SGW and PGW.

There is no way to cleanly fix this problem even using inefficient techniques at this point in time it is simply too late in time. We have to prepare much earlier in the process. This is the reason why we later require that the "components" likely to fail must be determined at PDN session establishment..

Scenario 4: PGW user plane board failure - unique IP addresses.

Assume a PGW is handling 4 Million concurrent PDN connections. The PGW has a few boards handling PDN control plane data and GTPv2 control plane. It also has 10 user plane traffic handling boards . Each user plane board has its own unique user plane IP address. Assume a user plane board dies, or the physical links leading to that board are cut, or the IP route to that user plane address is faulty in the IP backbone network.
The SGW might detect that the GTPv1 user plane path is unavailable from GTPv1 echo requests not getting GTP echo responses on the user plane path to the board.. This results in 400000 PDN connections needing to be cleared . The SGW can clearly identify the PDN connections since they are logically attached to the GTPv1 user path and that data is in the SGW's PDN connection table so no special signalling is required.
Now the MME needs to be informed by the SGW. So far no message exists to inform the MME over S11 that a particular S5/S8 GTPv1 user plane IP path is not working between the SGW and PGW. If no such message is created all 400000 PDN connections need to be signalled individually to the MME in the network (say for example most of these go to 10 MME then each MME would get 40000 Delete Session Requests each).

Suppose a new S11 message is created that could indicate that a particular GTPv1 user plane IP path is not working between the SGW and PGW. The MME does have the S5/S8 user plane IP addresses stored in the PDN connection subtable of the MME context table. Hence, each MME could clear the connections if it is given this new message.
Note: This makes it quite clear that such a user plane path failure is NOT a complete node failure. Logically it is a partial node fault in the PGW. The same applies for control plane failures in multi-homed nodes.
Scenario 5: PGW user plane board failure - unique IP addresses.

This is exactly the same scenario as Scenario 4

We just view it the same way as we viewed Scenario 1 in Scenario 2. All the SGW really sees when the PGW user plane board goes completely dead is a GTPv1 path link failure.. So one logical approach is the SGW can view the user plane path to that PGW user plane link as the SGW's "own" local resource that failed. So a PGW user plane address going down can also be an example of a partial node fault in the SGW.

There is more than one user plane path (in fact there is more than one path just to this one PGW). One User plane path link going down does not constitute the entire SGW going down (or PGW going down for that matter)..

Again perhaps an artificial example but still a valid one.
Scenario 6: PGW user plane board failure - common IP address.

This is exactly the same scenario as Scenario 4 except each of the 10 user plane boards have the exact same IP address. For example the PGW hardware might have front end routers/packet inspectors that uses the PGW TEID to route to the correct PGW user plane board or they may have some other mechanism (IMSI for example)..

Now the SGW can't use user plane path to determine which PDN connections to clear since there is only one PGW user plane IP address which is the same for all user plane boards.

This is a scenario where the SGW does not have existing information in the message or data structures to even figure out which PDN connections to clear. Will have 40000 PDN connections hung for a long time if we have to wait on the SGW and PGW to find the problem.
The PGW from the control plane boards might be able to figure out which PDN connections were impacted since it is a user plane board in the same node but it would have to signal 40000 Delete Session Requests.

Scenario 7: PGW control plane board failure - unique IP address.
Assume a PGW is handling 4 Million concurrent PDN connections. The PGW has 4 boards handling PDN control plane data and GTPv2 control plane. Each control plane board has its own control plane IP address. The PGW also has some number of user plane traffic handling boards. . Assume a control plane board dies, the physical link leading to that board is cut, or the IP route to that control plane address is faulty in the IP backbone network. This is again a partial node fault on the PGW.

The SGW might detect that the S5/S8 control plane path is unavailable from GTPv2 echo requests not getting GTPv2 echo responses on the control plane path to the board.. This results in 1 Million PDN connections needing to be cleared. The SGW can clearly identify the PDN connections since they are logically attached to the GTPv2 control plane path and that data is in the SGW's PDN connection table so no special signalling is required.

Now the MME needs to be informed by the SGW. So far no message exists to inform the MME over S11 that a particular S5/S8 GTPv1 control plane IP path is not working between the SGW and PGW. If no such message is created all 1 Million PDN connections need to be signalled individually to the MME in the network (say most of these go to 10 MME then each MME would get 100000 Delete Session Requests each).

Suppose a new S11 message is created that could indicate that a particular GTPv2 control plane path is not working between the SGW and PGW. The MME does have the S5/S8 control plane IP addresses stored in the PDN connection subtable of the MME context table. Hence, each MME could clear the connections if it is given this new message.

Note: This again makes it quite clear that a control plane path failure is NOT a node failure but a partial node fault

Scenario 8: PGW control plane board failure - unique IP address.
This is exactly the same scenario as Scenario 7. Again we just view it differently. We view it as the SGW having a local resource that is the GTPv2 control plane path to the PGW and a S5/S8 GTPv2 control plane path failure is viewed as a local resource that fails in the SGW.

Scenario 9: PGW control plane board failure -common IP address.
This is exactly the same scenario as Scenario 7 except each of the 4 control plane boards have the exact same IP address (i.e. a VIP interface). For example the PGW hardware might have front end routers/packet inspectors that uses the PGW TEID to route to the correct PGW control plane board.

Now the SGW can't use control plane path to determine which PDN connections to clear since there is only one PGW user plane IP address which is the same for all user plane boards.

This is a scenario where the SGW does not have existing information in the message or data structures to even figure out which PDN connections to clear.

Scenario 9: PGW control plane board failure -common IP address.
Assume a PGW is handling 4 Million concurrent PDN connections. The PGW has 4 boards that do packet inspection and charging on a PDN connection basis that are a common pool resource accessed through the backplane using internal ports and connections. There is no association with outside IP addresses at all. One such board fails.

Now the SGW can't use control plane or user plane path to determine which PDN connections to clear since such external resources are completely irrelevant.

This is a scenario where the SGW does not have existing information in the message or data structures to even figure out which PDN connections to clear.

PGW would have initiate the 1 Million Delete Session Request messages.

Scenario 10: PGW process failure.
Assume a PGW is handling 4 Million concurrent PDN connections. Assume that there is a UNIX process used for every 100000 PDN connections and all control plane related data is stored in that process for those 100000 connections. Multiple individual UNIX processes are used so that software faults don't impact alll 4 Million connections. If a software fault occurs that one UNIX process dies/hangs and only those 100000 connections are impacted. Again this is a partial node fault.
Obviously, there is no existing GTPv2 identifier being used that matches the UNIX process ID. Nor is including the ID at failure in a message useful since there is currently nothing to compare to.

PGW would have initiate the 100000 Delete Session Request messages.

Other Scenarios:
Obviously,there are a lot of ways for a node to fail and even more ways for it to partially fail. On the hardware side this can be failed CPU boards, user plane boards, internal routing boards, fans, power supplies, IP links, data bases, flash memory, hard drives and so on. It can also be faults in software or protocol stacks.
The partial fault can also be in an SGW, PGW or MME node (other nodes could be included but are currently out of scope though the release 8 SGSN can be considered)

Session Set IDs quick view

For every major component that is likely to fail for a PDN connection the vendor creates/assigns a unique "Session Set Identifier".

In the Create Session Request message the "Session Set Identifier" for those components are sent along with the node's identity. Receivers of the Create Session Request store each of the "Session Set Identifier" and node ID in the PDN connection table.

When the component fails a failure message with the "Session Set Identifier" with node ID is sent out. Only one message is needed to each adjacent peer. The receiver simply looks up PDN connections with that "Session Set Identifier" and node ID in its PDN connection table. The storage of the "Session Set Identifier" long before the fault occurs is how the signalling reduction works.
Design goal for Session Set IDs
We now move towards what we want to accomplish with the "Session Set Identifiers". Note we refer to the Fully Qualified Session Set ID as the pair of the node ID and the Session Set ID and it identifies some component/resource that can fail in that node.
Goal 1). Obviously the Fully specified Session Set Identifier has to identity the set of PDN connections/sessions in the other nodes that we want to identify as being invalid and needing clearing/recovery.

Goal 2) We want to be able to indicate a partial node failure from the node experiencing the failure with only one message caring the Session Set Identifier of the resource that failed and the node that had that partial fault. This reduces the 10000 to 100000 GTPv2 messages between peers in our examples to only one GTPv2 message between each peer. This is a huge advantage and the entire point in this proposal. Note that the node experiencing the fault does not have to have information on the thosands of PDN connections is lost but only one value of the Session Set ID corresponding to the failed component/resource.
Goal 3) We want the Session Set Identifier to be as opague as possible specifically for components inside a node. We want no resrictions on the Session Set Identifier. There are a lot of possible "components/resources" we have identified above that might fail I.e. the MME node identifier, PGW user plane IP address, PGW control plane IP address, PGW user plane board, SGW user plane board , a unix process on a user plane board. Generally, what is good for one node and vendor is almost surely poor for some other node and vendor. Tryng to cover all possible components that might fail in all possible designs now and in the future is not something that can be done. Allowing the vendor to figure out what components are likely to fail is a much wiser approach. Letting the vendor pick the values of the opague identifer means we are future proof as well. As a side benefit vendors do not have to divulge internal design specifics to peer nodes.
Goal 4) This is really Goal 3 but note that a PDN connection can use more than one component on a node all at the same time (i.e. a line interface card, a control plane card, a user plane card, routing card , software module etc). . So we should have more than one Session Set Identifier for a PDN connection even for a single node. How many is a tradeoff between RAM usage and flexibility.
Goal/Requirement 5). We must be able to at least handle partial faults in the PGW, SGW and MME today. Long term it should be relatively easy to add other large nodes into the picture at a later time (such as the release 8 SGSN) this again points out why the Session Set IDs should be opaque for maximum flexiblity.
Goal/Requirement 6). The MME and PGW do not talk directly with each other. Hence, the SGW has to proxy the information between the MME and PGW as needed.
Base requirements from goals
Goal 2 is basically a statement that the component is easily recognized and the node can tell its peers when the component fails. We have given many examples already (user plane boards , control plane boards , GTP paths, software modules etc). This is the responsibility of the vendor assigning the Session Set IDs.
Goal 3 and Goal 1 together result in the requirement that we need to store the Session Set IDs in the PDN connection tables at setup and possibly at PDN modification. That follows immediately from fact we have opague IDs so they are not predictable by the receiving peer node so they must be stored to establish a match when the fault appears. This has a small RAM cost but increases flexibility enormously.
On Goal 3 and Goal 4 we don't need to have the node ID to be opague but we do need it to be unique to a node and extendable..
MME node failure was an important case and directly shows the need for storage of IDs in the PDN connection table even for this extremely simple case.
General case requirements.
A node can have different types of components that can fail for the same PDN connection (example from an PGW you might have an ethernet line card, GTPv2 control plane card , user plane card). Therefore more than one Session Set ID is really desirable for a node. More than one Session Set ID is absolutely required to be stored in each nodes PDN connection table. For example we need for the PGW to handle both SGW and MME partial faults. Only major components need to be tracked and there cannot be a huge number of distince major components by definition. Hence, a 16 bit Session Set ID is more than sufficient.

The node ID should be between 16 bits and 32 bits since at the very least there are hundreds of operators in the world and potentially a moderate number of nodes possible in very large operators. 32 bits is recommended to reduce the possibility of accidentally assigning the same ID to more than one node.
We require that a PGW can handle an SGW fault or MME partial fault. For each node we also allow 2 Session Set IDs. This means we have that a PGW will have to store two 32 bit node IDs and 4 16 bit Session Set IDs.

Hence, 16 bytes per PDN connection.
Positive impacts
When a large node has a component failure causing a partial failure instead of sending 10000 to 1 Million Delete Session Requests it need only send one messsage using just one ID when a partial node failure occur to each peer node..

Negative impacts
To get the positive impacts we need sufficient flexibility to actually have Session Set IDs for the components that fail and we pay for this efficiency and flexibility primarily with a small amount of RAM/Memory/Storage in the PDN connection table

Costs are as follows:

1) CPU time at normal traffic. This is negligble. The Session Set IE is simple to parse and the only action is to store some bytes in the same PDN connection table entry which will be accessed by the traffic handling procedure at the same time.

2) CPU time when a fault occurs. At the node with the fault we have pure savings. It only sends one message out to each peer. For the peers receiving the partial fault indiation they get a huge savings up front since they don't have to process the thousands of Delete Session Requests. The might have to do a brute force scan of all its PDN connections . For a node with many PDN connections impacted we have a major CPU savings and for a node with only a few PDN connections impacted there is a small CPU cost. If an implementor wants less CPU time wasted on brute force search for matches the PDN connection table can be cross indexed by Session Set IDs to allow reverse lookup quickly but paid for with a small memory impact and very small CPU cost at each insertion/deletion into the reverse lookup table at normal PDN connection procedures. For a multiprocessor node each processor can be told the Node ID and Session Set ID just once and each processor does its own cleaning individually so there is nothing very special about multiprocessor systems (no significant inter processor communication overhead here).
2) RAM. In a PGW (or SGW or MME) 16 bytes of RAM is needed per PDN connection using inefficient storage. For a 4 Million PDN connection core node that is 64 Megabytes worse case. Using basic programming techniques (this is a pure implementation issue outside of standards but for more details see Editor's Notes in C4-082603) the storage per PDN connection can be reduced to about 4 bytes for MME, 4 bytes for SGW and 6 bytes for PGW without loss of information. I.e. for a node with 4 Million PDN connections that would be 16 Megabytes for a MME node, 16 Megabytes for a SGW node and 24 Megabytes for a PGW node. Comparable in size to a few photos from a digital camera.
Obviously the direct RAM impact is not a huge concern. This is particularly true once you consider the negative RAM impact of having even 10% of your PDN connections hung for hours. I.e. we spend a small amount of RAM up front that can save much more at a fault.
3. Proposed Improvement

When a PDN connection is first created each node exchanges a list of Session Set-IDs piggybacked in the Create Session Request and Create Session Response. These Session Set IDs are internal components/resources that are likely to fail in the future as identified by the vendor. As each node receives such a list, it stores it in the PDN connection record for the newly established PDN connection. It also relays the Session Set-IDs down the line with the Create Session Set Request/Response. For a PDN connection this creates a fully linked mesh of PDN connection records with logical links between nodes and within each node it also gives which Session Set IDs are tied to which PDN connection records.
Figure 1 show the relations between the resources, the Session Set ID and how the messages are used to create the linkage.

When a node detects that a component/resource fails it simply sends a 'Release Session Set ID Request' with the Session Set ID of the failed component. (this is a new GTPv2 message).
Note that PMIPv6 S5/S8 can be included in the GTPv2 chain by simply having a Vendor Specific Mobility Option in the same format as the Session Set IDs below and where Create Session Request/Response becomes PBU/PBA. In PMIPv6 the Session Set IDs would be stored in the Binding Cache Entry record. These PMIPv6 issues will be detailed in a future contribution.

[image: image1]

[image: image2]
Figure 1. Create Default Bearer with Session Set ID creation at initial creation of a PDN connection. The top part of the figure shows internal components/resources in each node (different geometric shapes are meant to indicate different types of internal resources). The line travelling through the components/resources indicate those components/resources that each node has picked to be involved in the PDN connection. The linkage of the components/resources is done by the Session Set IDs being passed in the GTPv2 messages and stored in each nodes PDN connection table entry. Note that the actual IE that is added to the GTPv2 message is detailed in CR C4-082603. It corresponds to the lists such as [PGW-1,2,6] shown above. Note that each node has received each of its peer's Session Set ID lists at the end of the procedure so all nodes know all the IDs being used in the PDN connection but no node has any idea what its peer IDs actually represent.
Components/Resources
Each vendor of a particular node chooses the types of components/resources it considers important in regards to possibility of failure and its reliability impacts. It is only retainabilty, not availabilty, that counts. The intent is for the vendor to consider the major components that can fail and impact any existing PDN connections from the peers point of view. Possible examples: an outside cable, an Ethernet card, a payload card, a CPU card, a digital processor, a hard drive an IP route, a UNIX process in a process pool, a shared memory pool, a software module and so on. A component that always results in complete loss of all existing PDN connections does not need to be seperately treated from the node as a whole. Dedicated replicated mated pairs behave as a single resource from a functioning/not functioning point of view so it is the mated pair that is the component/resource . Also the component/resources must be monitored by the node or an agent of the node. There is no value here to have a component/resource type being tracked that cannot be detected as failing. There normally would be more than one type of component/resource for a node that can fail. However, component/resources that are expected to only impact a few PDN connections lost are probably better handled by simply tearing down the PDN connections individually. Again the goal is to reduce signalling when a key major component fails not to deal with every minor fault.
Note a vendor will NOT need to communicate what types of internal components/resources are likely to fail so there is no sensitive information given out.

SessionSet ID
The Session Set ID combined with the Node ID uniquely identifies an internal component/resource that might fail within a node. The node with the internal component/resource makes the Session Set ID assignment. There are two basic requirements. 1) Distinct components/resources have distinct Session Set ID values 2) At least between node restarts the Session Set ID does not change for a component/resource in use.

For hardware components/ resources this is usual a trivial task that can be done using a static assignment such as

(chip # + #of chips per board * (board slot # + number of boards in a subrack * subrack number)) + some offset

For dynamic software resources such as a UNIX process a simple incremental counter might be sufficient.

Exact encoding is only the concern of the vendor creating the Session Set ID. Peers simply store the value and use it as a key to find the PDN connections when the node reports an error for that Session Set ID.

The actual Session Set ID value is sent in the messaging but what component/ resource it represents internally to a node is not known. The Session Set ID is an opaque identifier to any peers.

4. Proposal

It is proposed to agree the related CRs C4-082602 and C4-082603.

Create Default Bearer Response�([PGW-1,2,6],

[SGW-1,1,4])

Create Default Bearer Response�([PGW-1, 2,6])

Create Session Request��([MME-1,2,4],�[SGW-1,1,4])

PGW-1

SGW-1

Create Session Request��([MME-1,2,4])

MME-1

7

6

5

4

2

3

1

MME-1

7

6

PGW-1

4

3

2

5

1

6

5

2

4

1

SGW-1

3

7

6

5

4

2

3

1

MME-2

7

6

5

4

2

3

1

MME-3

6

5

2

4

1

SGW-2

3

6

5

2

4

1

SGW-3

3

7

6

PGW-2

4

3

2

5

1

7

6

PGW-3

4

3

2

5

1

