
3GPP TSG CT WG4 Meeting #39
C4-081902
Cape Town, South-Africa, 5th – 9th May 2008
Source:
Huawei
Title:
Pseudo-CR on Extension header in GTP v2
Spec:
3GPP TS 29.274 v1.0.0
Agenda item:
6.1.2
Document for:
Decision

1. Reason for Change
RAN3 had sent a LS to SA2, RAN2 and CT4 (R3-081576) in which RAN3 provided 3 alternative solutions to solve the problem of out of order packets that are caused by the path switch event during inter-RAT HO and asked for CT4’s comments. The alternatives are listed below.
- Alt1: insert a ‘forwarding marker’ in source eNB for each forwarded packet.

- Alt2: use separate tunnels to differentiate forwarded and direct path packets at the target RNC/SGSN.

- Alt3: insert GTP-U SN by the EPS.
This contribution dose not discuss which alternative could be the best choice to solve the problem. Nevertheless, one of alternatives provided by RAN3 in the LS introduces a valid usage of extension header in GTP v2.
The explanation of Alt 1 in the LS:
*************************Quote of incoming LS *****************************
Alt1: For the correction of out of order packets that are caused by the path switch event it was discussed to insert a ‘forwarding marker’ in source eNB for each forwarded packet. This allows the target RNC/SGSN to distinguish between forwarded DL packets and direct path DL packets. The eNB needs to insert the forwarding marker, i.e. a new extension header field for GTP-U. The CN nodes need to relay the forwarding marker information. The target RNC/SGSN must handle the forwarding marker.
******************************End of Quote********************************

The solution of the Alt is illustrated in the figure below

[image: image1.emf]Source

eNodeB

Source

S-GW

Target

S-GW

Target

RNC/SGSN

P-GW

Forwarded data from source

Downlink data

 Figure 1
In Alt 1, the data packets received at source eNodeB will be forwarded through the path of

Source eNodeB -> Source S-GW -> (Optional) Target S-GW -> Target RNC/SGSN
An extension header will be generated by the Source eNodeB and forwarded to the target RNC/SGSN along with each forwarded data packet. The target RNC/SGSN is required to comprehend this extension header to distinguish forwarded data packet from normal downlink packets. But it is not mandatory to the intermediate nodes (S-GW) to comprehend the meaning of this extension header, the intermediate nodes just need to follow the defined process logic of coping this extension header in the duplicated data packet and forward it to the next intermediate node or receiving endpoint.
The scenario above has been well supported in GTP v1 by 2 bits “'comprehension required” flag (CR flag) of type field in extension header.

*************************Quote of TS29.060 **********************************

Bits 7 and 8 of the Next Extension Header Type have the following meaning:

	Bits

8 7
	Meaning

	0 0
	Comprehension of this extension header is not required. An Intermediate Node shall forward it to any Receiver Endpoint

	0 1
	Comprehension of this extension header is not required. An Intermediate Node shall discard the Extension Header Content and not forward it to any Receiver Endpoint. Other extension headers shall be treated independently of this extension header.

	1 0
	Comprehension of this extension header is required by the Endpoint Receiver but not by an Intermediate Node. An Intermediate Node shall forward the whole field to the Endpoint Receiver.

	1 1
	Comprehension of this header type is required by recipient (either Endpoint Receiver or Intermediate Node)

Figure 4: Definition of bits 7 and 8 of the Extension Header Type

An Endpoint Receiver is the ultimate receiver of the GTP-PDU (e.g. an RNC or the GGSN for the GTP-U plane). An Intermediate Node is a node that handles GTP but is not the ultimate endpoint (e.g. an SGSN for the GTP-U plane traffic between GGSN and RNC).
******************************End of Quote********************************

However, in current GTP v2 TS, only 1 bit CR flag is used to indicate the receiving nodes (intermediate and endpoint node) if comprehension of the extension header is mandatorily required. That is to say, the scenario introduced by Alt 1 is not supported in GTP v2 that comprehension is mandatorily required not to intermediate node but to endpoint node only.

In Rel-8, the problem can be solved by mandatorily asking every Rel-8 node to comprehend all extension headers defined in Rel-8. But in future release, if new extension header will be introduced for specific scenario which also requires mandatory comprehension to only endpoint node, how could it be handled with only 1 bit CR flag?
Therefore we propose to continue using 2 bits CR flag in GTP v2. By this proposal, the length field of extension header has to be moved to 2nd octet, i.e., the space used in the first section (4 octets per section) of extension header for the value field decreases to 2 octets. But it has met the requirement of all existing extension headers defined in GTP v1 and potential use of “PDCP PDU number” in GTP v2. Actually, for extension headers with numeric value (e.g., PDCP PDU number), usually the type of char (1 octet), short (2 octets) or DWORD (4 octets) is used, 3 octets value is an infrequent case, hence this proposal will not increase the length of extension header. The value length of “Timestamp” extension header used in eMBMS user plane which requires a high precision timestamp may be longer than 2 octets, even longer than 4 octets. However, 7 octets timestamp is also rare case.
There is another issue which is not clearly stated in current TS. That is if an extension header is uniquely identified by its type value (bits 6-8 of octet 1), or by its type value plus CR flag, i.e., if the CR flag can be dynamically set by the sender per procedure? In this contribution, we propose to follow the approach of GTP v1, i.e., static CR flag but add an editor’s note for further consideration.
2. Proposal

It is proposed to agree the following changes to 3GPP TS 29.274 v0.3.0.
* * * Start of Change * * * *

5.1.1.1
General format of the Extension Header

The Extension Header is a variable length header, which may be used by both the GTP-C and the GTP-U protocols. The length of an Extension Header shall be a multiple of 4 octets. The Extension Header shall be at least 4 octets long. Figure 5.1.1.1 illustrates the format of the Extension Header.

	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	

	
	
	

	
	
	Bits

	Octets
	
	8
	7
	6
	5
	4
	3
	2
	1

	1
	
	Extension Header Type
	NEH

	2
	
	Spare (all bits set to 0)
	Extension Header Length

	3 – 4n
	
	The actual value of the Extension header and a padding, if necessary (n = 1, 2, … m)

Figure 5.1.1.1-1: The format of the Extension Header

The Extension Header contains the following fields:

· Bits 2-8 of octet 1 represent the Extension Header Type field.

·
·
· Bit 1 of octet 1 represents the Next Extension Header (NEH) flag. If the NEH flag is set to 1, another Extension Header follows the given one. Otherwise, the given Extension Header is the last field of the GTPv2 header.
· Bits 1-6 of octet 2 represent the overall length of the Extension Header (including first 2 octets) in units of 4 octets. This field shall be used to determine the overall length of the Extension Header and provides for the value range of 4 – 252 octets (decimal).
· Bits 7-8 of octet 2 are spare bits. They shall be sent as binary '0'. The receiver shall not evaluate them.
Octet 3-4n (n = 1, 2, … m) of the Extension Header shall contain the following fields:

-
The actual value of the Extension Header.

-
Padding, if necessary.

Bits 7 and 8 of the Extension Header Type define how the receiving entity shall handle unknown Extension Types. The receiving entity of an extension header of unknown type but marked as 'comprehension not required' for that receiving entity shall continue handle next extension header (using the Extension Header Length field to identify its location in the GTP-PDU).

The receiving entity of an extension header of unknown type but marked as 'comprehension required' for that receiving entity shall:

-
If the message with the unknown extension header was a request, send a response message back with CAUSE set to "unknown mandatory extension header".

-
Send a Supported Extension Headers Notification to the originator of the GTP PDU.

-
Log an error.

Bits 7 and 8 of the Extension Header Type have the following meaning:

	Bits

8 7
	Meaning

	0 0
	Comprehension of this extension header is not required. An Intermediate Node shall forward it to any Receiver Endpoint

	0 1
	Comprehension of this extension header is not required. An Intermediate Node shall discard the Extension Header Content and not forward it to any Receiver Endpoint. Other extension headers shall be treated independently of this extension header.

	1 0
	Comprehension of this extension header is required by the Endpoint Receiver but not by an Intermediate Node. An Intermediate Node shall forward the whole field to the Endpoint Receiver.

	1 1
	Comprehension of this header type is required by recipient (either Endpoint Receiver or Intermediate Node)

Figure 5.1.1.1-2: Definition of bits 7 and 8 of the Extension Header Type

An Endpoint Receiver is the ultimate receiver of the GTP-PDU (e.g. a MME or a P-GW for the GTP-C plane, or an eNodeB or the P-GW for the GTP-U plane). An Intermediate Node is a node that handles GTP but is not the ultimate endpoint (e.g. an S-GW for some of GTP-C messages signalled from MME to P-GW via S-GW or vice versa, or an S-GW for the GTP-U plane traffic between P-GW and eNodeB).

Editor’s Note: It is FFS if “Comprehension Required” flag can be independent of the extension header type and dynamically set by the sending entity per procedure. By this way, only 5 bits are left for “Extension Header Type” (0-31)
5.1.1.2
Extension Header types

Editor’s note: it is FFS if the receiving entity should notify the sending entity about discarded EH, or not.

* * * End of Change * * * *

_1274258720.vsd
Source eNodeB

Source
S-GW

Target
S-GW

Target RNC/SGSN

P-GW

Downlink data

Forwarded data from source

