

Error! No text of specified style in document.
8
Error! No text of specified style in document.

3GPP TSG CT WG4 Meeting #39bis
C4-081502
Zagreb, Croatia, 23rd – 27th June 2008

Source:
Alcatel-Lucent

Title:
pCR on 29.864 Study on IMS Application Server Service Data Descriptions for AS interoperability; Clarification of the CSDB binary data storage schema

Agenda item:
6.2.2

Document for:
Decision

1. Introduction
Contributor cleanup is applied in these sections.

2. Reason for Change

This CR clarifies the CSDB binary data storage schema, Documentation of the approach was provided in an XML schema that was appropriate for web based XML publishing criteria, but was confusing in this context. The XML documentation structure is revised into a table format exposing documentation that is more easliy read.
3. Conclusions

<Conclusion part (optional)>
4. Proposal

It is proposed to agree the following changes to 3GPP TS 29.864.

* * * First Change * * * *

8
Alternative solutions

8.1
Introduction
Editor’s Note: This section will contain all the possible solutions presented and the changes required in the specifications to implement them.
The foundations of an approach to storing subscriber data supporting an IMS Application server are presented.

Editors Note: this section does not yet address the complete list of features within section 6. It should be enhanced to capture this data.

8.2
A Binary Storage Approach to Defining IMS Service Data
8.2.0
Service Data Description
The definition of TAS service data contained in this section is one realizable mechanism of defining supplementary service data for a Telephony application server. It contains a space efficient, therefore transmission bandwidth efficient mechanism for defining data associated with Telephony supplementary services in an IMS environment.

With a telephony application server, some data pertains to the handset, whereas other data applies to each address tied to the handset.
The 3GPP data model for IMS comes in 2 variants. This exercise selected the simpler of the 2 formats. This model is shown as (3GPP 23.228 [22] section 4.3.3.4). This is repeated in Figure 8.2.1.

[image: image1.wmf]IMS

Subscription

Private

User Identity

Public

User Identity

Public

User Identity

Public

User Identity

Service

Profile

Service

Profile

Figure 8.2.1: 3GPP Data Model Structure
The AS may have requirements to keep data scoped to each of the boxes identified in the above figure. This assumes that each PUID may have independent features. The TAS structure to model is shown in Figure 8.2.2. Implementations have shown that this can be achieved with databases identified in boxes in this figure.

In the definition that follows, only the shaded portion of this figure may apply when the PUIDs share the same services. Alternately, different services or may apply for each PUID within a subscription, and in those instances, the additional services, (or selection list or simultaneous_ring, etc.) databases may apply. Subscribers with more complex features and data additions, such as Selection features (screening, etc.) and Simultaneous Ringing (Flexible Alerting) require separate databases. Since the Sh interface provides a query for PUIDs within the subscription, the information defining the related PUIDs can be obtained via Sh query, and not maintained on the TAS. The Party database only contains data which applies across all PUIDs. Extensions to the defined list of databases are addressed in section 7.2

[image: image2.wmf]

PUID

PUID

*

PUID

Flex_Alert

*

Party

ESRNs

*

Services

*

Selection_

List4x4

*

Flex_Alert

*

Services

*

Selection_

Li

st4x4

*

Figure 8.2.2: Association of Services across PUIDs

The information listed in this section contains detailed data fields required to support IMS Telephony services defined with in 3GPP.
The data supporting the Services database is listed in tables complete with use-descriptions. , representing the documentation of the necessary data. This is immediately followed within each section by the C style data definitions. These clarify the s a binary representation of this structure that will be base64 encoded into the Sh interface within the User-Data AVP.

Reserved indicates that this value is currently used for masked capabilities. Unused indicates the data assignment may be reassigned to new functionalities.

8.2.1
Services Data Definition

The dataabase name for this Service definition, as requested from an HSS ServiceIndication is "SERVICES RELEASE1"

This is the main structure for services data. This is essentially per-subscriber data, but for aliases multiple PUIDs can point to a single entry. Data captured here is intended to reflect the data for features described in section 6, but is currently absent of data supporting some services. These services will be completely defined.
	Name
	Description/Details

	svcs_hdr

	Description
Carries the release identifier for this structure (0001) and the overall length of this block (fixed + variable, including this header, padded to four bytes)

Attribute Description
DM_TAS_DB_HEADER_WITH_LEN

	svcs_asgn
	Description
This carries the boolean indications per service whether it is assigned for this subscription or not (DBYES=YES...). Indexed by DM_TAS_SERVICE_ID.
Attribute Description
DM_TAS_SERVICE_STAT

	svcs_actv
	Description
This carries the boolean indications per service whether it is currently activated for this subscription or not (DBYES=YES...). Indexed by DM_TAS_SERVICE_ID. Should be YES only if already assigned. (Note that it's a big bit field, not an array of dmubytes.)
Attribute Description
DM_TAS_SERVICE_STAT

	svcs_by_puid
	Description
This carries the boolean indications per service whether the service data should come from the per-PUID definition or from the primary PUID are stored here. Initially, the per-PUID data are stored in the FEATIDX belonging to the Default Originating PUID, a.k.a. the Primary PUID. So that tuple will have all bits set to DBNO, as there's nowhere else to go. Another observation is that very few features are permitted to be per-PUID. Provisioning must enforce that. One can determine if a PUID has services specific only to the PUID by checking that its features are different than that of the "party" common feature set, This is the set of features that applies to all PUIDs in the subscription. If different features are detected, then those service parameters whose svcs_by_puid bits are set in the local PUID’s SERVICES database apply specific to that PUID. The remainder of the SERVICES tuple consist of the common party features. Note that potentially the Party has features assigned which the PUID reserves but doesn't have assigned. Again indexed by DM_TAS_SERVICE_ID. (Note that it's a big bit field, not an array of DMUBYTEs.)
Attribute Description
DM_TAS_SERVICE_STAT

	barring_parm
	Description
Parameters for TAS_CALL_BARRING

Attribute Description
DM_CALL_BARRING_PARM

	blocking_parm
	Description
Customization parameters for TAS_CALL_BLOCKING
Attribute Description
DM_CALL_BLOCKING_PARM

	transfer_parm
	Description
TAS_CALL_TRANSFER
Attribute Description
DM_CALL_TRANSFER_PARM

	vm_forward_to
	Description
Number to use when forwarding to voice mail. Normally also the number the user enters to retrieve voice mail. Stored here because it's used by several services
Attribute Description
 DM_TAS_FORWARD_TO

	cf_var_parm
	Description
Parameters for TAS_CF_ALL (CFV)

Attribute Description
DM_CF_ALL_PARM

	cf_busy_parm
	Description
Parameters for TAS_CF_BUSY (CFBL)

Attribute Description
DM_CF_BUSY_PARM

	cf_noresp_parm
	Description
Parameters for TAS_CF_NO_RESPONSE (CFNR/CFDA)
Attribute Description
DM_CF_NO_RESPONSE_PARM

	carrier_sel_parm
	Description
Parameters for TAS_CARRIER_SEL
Attribute Description
DM_CARRIER_SEL_PARM

	clid_parm
	Description
Parameters for TAS_CALLING_LINE_ID_PRESENTATION

Attribute Description
DM_CALLING_ID_PARM
Rules
Default (unassigned) is edit_clir == DBNO

edit_clir is only allowed in cases where

per-call privacy override is also allowed.

Calling ID edit_clir cannot be YES if clir is a Permanent type

	multiwaycall_parm
	Description
Parameters for TAS_MULTIWAY_CALLING

Attribute Description
DM_ MULTIWAY_PARM

typedef struct {

DM_TAS_DB_HEADER_WITH_LEN svcs_hdr;

DM_TAS_SERVICE_STAT svcs_asgn;

DM_TAS_SERVICE_STAT svcs_actv;

DM_TAS_SERVICE_STAT svcs_by_puid;

DM_CALL_BARRING_PARM barring_parm;

DM_CALL_BLOCKING_PARM blocking_parm;

DM_CALL_TRANSFER_PARM transfer_parm;

DM_TAS_FORWARD_TO vm_forward_to;

DM_CF_ALL_PARM cf_var_parm;

DM_CF_BUSY_PARM cf_busy_parm;

DM_CF_NO_RESPONSE_PARM cf_noresp_parm;

DM_CARRIER_SEL_PARM

DM_CALLING_ID_PARM clid_parm;

DM_MULTIWAY_PARM multiwaycall_parm;

} SERVICES_RELEASE1;

As an example of a separate database, we could use the CUG example

typedef struct {

DM_TAS_DB_HEADER_WITH_LEN svcs_hdr;

DM_TAS_SERVICE_STAT svcs_asgn;

DM_TAS_SERVICE_STAT svcs_actv;

DM_TAS_SERVICE_STAT svcs_by_puid;

DM_CUG_TYPE1 cug _data1;

DM_CUG_TYPE2 cug_data2;

} CUG_RELEASE1;

8.2.2
DMTAS_FORWARD_TO

This is a further definition of the above named structure.

	Name
	Description/Details

	DM_TAS_FORWARD_TO
	Description
This is the Forward-to numeric string, which will be processed by Digit Analysis and E.164 conversion. Might be in E.164 format already, but it could also be a sequence of digits, maybe even with an access code (account code, authorization code, carrier selection...). Not a URI - no prefix, no domain; it's not even an implied URI, unlike DMPUID_USER. This is a request URI, and so may have parameters and access codes which are not directly part of the destination address.
The size is somewhat arbitrary, but should be large enough to handle the various codes besides a directory number which might appear. The size is not actually large enough to hold all possible combinations.

SEE ALSO: DMTAS_DN, when no invocation or access codes are permitted (e.g. ESRNs) and it's got to be a number.

The DM_TAS_FORWARD_TO should be composed of at most 32 bytes as variable length data.

Attribute Description
alphanumeric
DMTAS_URIVARBYTE

typedef DMTAS_URI
DMTAS_FORWARD_TO;

8.2.3
DMTAS_DN
This is a further definition of the above named structure.

	Name
	Description/Details

	DMTAS_DN
	Description
An ASCII DN string; primarily a digit-string received from another entity, generally E.164. Note that this is not large enough to hold all user-dialed strings, which can include dialcodes and other prefixes. This is a real string, i.e. null-terminated. 16 characters are allocated to allow room for the '+' character used in SIP to indicate that a number is fully-resolved, i.e. E.164. E.164 numbers are at most 15 digits.

Attribute Description
type="VARCHAR" size="16" ioType="AlphaNumeric" presentation="Raw DMTAS_URIVARBYTE

typedef char DMTAS_DN[16 + 1];

#define SZTAS_DN
16

8.2.4
DMULONG

Typedef unsigned long DMULONG;

8.2.5
DMUSHORT

Typedef unsigned short
DMUSHORT;

8.2.6
DMUBYTE
This is a further definition of the above named structure.

	Name
	Description/Details

	DMUBYTE
	Description
An Unsigned Byte type, so that it's clear this is not a single character (e.g. 'a') but a numeric element. No type called byte is defined in the C/C++ Language, but an unsigned 8 bit char is defined. We use Unsiged Char to define a UByte

Attribute Description
Type=UTINYINT

typedef unsigned char DMUBYTE;

8.2.7
DMTAS_VARBYTE
This is a further definition of the above named structure. It identifies the structural contents of a variable length Byte definition.

	Name
	Description/Details

	vdata_offset release
	Description
This field is the starting byte count relative to the start of the release

Attribute Description
unsigned short

	vdata_len rls_size
	Description
The byte count of the variable length contents

Attribute Description
unsigned short

typedef struct { {

unsigned short
vdata_offset;
/* byte offset from release start */

unsigned short
vdata_len;

/* length in octets */

} DMTAS_VARBYTE;

8.2.8
DMTAS_VARSTRING

This is a further definition of the above named structure. It is a VARBYTE subtype used to hold string data. Nominally these data are of type UTF-8, although the length is still specified in bytes not characters. Being a string, Null characters are not legal. Initially, the character set is restricted to printable ASCII, plus white space.
	Name
	Description/Details

	DMTAS_VARSTRING
	Description
This field is the starting byte count relative to the start of the release

Attribute Description
DMTAS_VARBYTE

typedef DMTAS_VARBYTE
DMTAS_VARSTRING;
8.2.9
DMTAS_URI
The following table contains further definition of the structure named in this heading.
	Name
	Description/Details

	DMTAS_URI
	Description
A VARSTRING subtype used to hold URIs. Primarily sip: or tel:, the URI type is restricted to the general URI layout and character set. Semantically it must also be an acceptable request, erequests may be strings of digits which are meaningful to a TAS but do not map to a destination (e.g. service access codes).

Attribute Description
DMTAS_VARSTRING

typedef DMTAS_VARSTRING

DMTAS_URI;

8.2.10
HEADER WITH LENGTH

This is a further definition of the DM_TAS_DB_HEADER_WITH_LEN structure. Identifies the structural contents of a release in a database.

	Name
	Description/Details

	release
	Description
This field is unique for a data definition. It identifies which data definition should be Applied in order to interpret the release

Attribute Description
unsigned short

	rls_size
	Description
The byte count of the release contents length, including variable length contents that the release may contain.

Attribute Description
unsigned short

typedef struct {

unsigned short
release;
/* Version ID */

unsigned short
rls_size;
/* length in octets */

} DM_TAS_DB_HEADER_WITH_LEN;

8.2.11
TAS_SERVICE_STAT

<
	Name
	Description/Details

	DM_TAS_SERVICE_STAT
	Description
This array exists in order to encapsulate the size of the service list for reuse elsewhere. This should be accessed as a set of boolean bits, indexed by DM_TAS_SERVICE_ID.

Attribute Description
Ubyte, size = 8

Typedef dmubyte DM_TAS_SERVICE_STAT[8];

#define SZ_TAS_SERVICE_STAT
8

8.2.12
DM_TAS_CALLING_ID_RESTRICT_ENUM

This is a further definition of the DM DM_TAS_CALLING_ID_RESTRICT_ENUM data. It describes the variant of Calling ID Restriction which is in place. Note that most of these apply to both Calling Line and Calling Name Presentation/Restriction (CLIP/CLIR, CNIP/CNIR). This enumeration specifies the treatment/labeling of IDs in INVITEs and responses to INVITEs. Unsubscribed is equivalent to PERM_PUBLIC.

	Enumeration
	Description/Details

	DM_ID_RESTRICT_PERM_PRIVATE
	Description
Permanent Private.

"Never" present this calling ID (apart from OVERRIDE features).

Attribute Description
Enumeration

	DM_ID_RESTRICT_PRIVATE
	Description
The default state is to not present the ID, but the caller can change this per call with a dialed code.

Attribute Description
Enumeration

	DM_ID_RESTRICT_PUBLIC
	Description
The default state is to present the ID, but the caller can change this per call with a dialed code.

Attribute Description
Enumeration

	DM_ID_RESTRICT_PERM_PUBLI
	Description
Always" present this calling ID to the network (whether called party receives it of course depends on their subscription).

Attribute Description
Enumeration

typedef enum {

DM_ID_RESTRICT_PERM_PRIVATE,

DM_ID_RESTRICT_PRIVATE,

DM_ID_RESTRICT_PUBLIC,

DM_ID_RESTRICT_PERM_PUBLIC

} DM_TAS_CALLING_ID_RESTRICT_ENUM;

#define BF_TAS_CALLING_ID_RESTRICT_ENUM
8

8.2.13
DM_TAS_CF_EDITING

Enumeration of permissions for user-originated changes of Call Forwarding data
	Enumeration
	Description/Details

	DM_CF_EDIT_FULL
	Description
User has full permission, i.e. can activate and deactivate the service, and can change the forward-to destination.

Attribute Description
Enumeration

	DM_CF_EDIT_PARTIAL
	Description
User has only partial permission, i.e. can only activate and deactivate the service. This means that other fields cannot be changed by the user, such as forward-to destination, bearer-based options, or changes to the timeout value. (Not all services have these attributes, some may have other attributes, and some services may have attributes they don't use.)

Attribute Description
Enumeration

	DM_CF_EDIT_NONE
	Description
User has no permission, so can neither activate/deactivate the service, nor change the forward-to destination.

Attribute Description
Enumeration

typedef enum {

DM_CF_EDIT_FULL,

DM_CF_EDIT_PARTIAL,

DM_CF_EDIT_NONE

} DM_TAS_CF_EDITING;

#define BF_TAS_CF_EDITING
2

8.2.14
DM_TAS_CF_MODE

Enumeration of possible forward-to options for call-forwarding services.

 Note that this implementation means that the forwarding options are mutually exclusive (a single call can only be forwarded to one place), and activations are memoryless (one can't activate one mode, activate a second, deactivate the second, and expect the first mode to be used).

	Enumeration
	Description/Details

	DM_CF_TO_DN
	Description
Forwarding should use the PUID specified by this specific service (normally user-programmable).

Attribute Description: Enumeration

	DM_CF_TO_VM
	Description
Forwarding should go to the VoiceMail Service number provisioned for this subscriber.

Attribute Description
Enumeration

	Reserved
	Description
Attribute Description

Enumeration

	DM_CF_TO_SPARE1
	Description
Attribute Description

Enumeration

typedef enum {

DM_CF_TO_DN,

DM_CF_TO_VM,

Reserved

DM_CF_TO_SPARE1

} DM_TAS_CF_MODE;

#define BF_TAS_CF_MODE
2

8.2.15
DM_TAS_SERVICE_ID

Enumerates the services supplied by the organic Telephony Application Server (TAS). Many services have feature parameters in SERVICES, in addition to their basic assigned/active status.

The enumerations are numbered, so that the bitmaps in data (DM_TAS_SERVICE_STAT) won't shift when new members are added or deleted They should stay in numeric order! Note the END entry (at the end of the list); this can be used both as a loop boundary and in size declarations.

Empty descriptions represent proposed but not committed/defined/implemented services. (Unused services, and holes in the numbering, are to some extent left around to provide spares for field use, as well as biding time until the unused service is actually implemented.) Reserved values represent ranges that should not be reused.

If the number is listed as unused, it truly is, if thenumber is not listed, it’s also unused. The size covers all possible values, although most uses are limited to the size implied by TAS_END_OF_SERVICES.

typedef enum {

VM_FTN = 1,

TAS_CALLING_LINE_ID_PRESENTATION = 2,

TAS_CALL_BARRING = 3,

TAS_CALL_BLOCKING = 4,

TAS_CALL_TRANSFER = 5,

TAS_CALL_WAITING = 6,

TAS_CF_ALL = 7,

TAS_CF_BUSY =8,

TAS_CF_NO_RESPONSE = 9,

TAS_DO_NOT_DISTURB = 10,

TAS_MULTIWAY_CALLING = 11,

TAS_CF_NOT_LOGGED_IN = 12,

TAS_CF_NOT_REACHABLE = 13,

TAS_COMMUNICATION_DEFLECTION = 14,

TAS_CF_DIVERSION NOTIFICATION = 15,

TAS_ORIGINATION_ID_RESTRICTION = 16,

TAS_TERMINATION_ID_RESTRICTION = 17,

TAS_TERMINATION_ID_RESTRICTION = 18,

TAS_MALICIOUS_COMMUNICATION_IDENTIFICATION = 19,

TAS_MALICIOUS_COMMUNICATION_IDENTIFICATION_TEMP = 20

TAS_COMMUNICATIONS_HOLD = 21,

TAS_MESSAGE_WAITING_INDICATION = 22,

TAS_REVERSE_CHARGING = 23,

TAS_CLOSED_USER_GROUP = 24,

TAS_FLEXIBLE_ALERT = 25,

TAS_CCBS/CCNR = 26,

TAS_AOC-S = 27,

TAS_AOC-D = 28,

TAS_AOC-A = 29,

TAS_END_OF_SERVICES = 30,

} DM_TAS_SERVICE_ID;

#define BF_TAS_SERVICE_ID
30
8.2.16
DM_CALL_CATEGORY
Provides most of the variants of call classification determined by Digit Analysis, plus a few other categories. Most variants are not mutually exclusive, so the representation is bitfields rather than an enum. When the comment refers to "designated" numbers, it means digit strings entered in the dialing plan as aliases for that service; so service providers can choose different numbers for logical services like emergency and directory assistance as needed to accommodate differing country conventions. This particular structure provides category data for several different services, which is why it isn't a PARM all by itself. The most obvious service is Call Barring, which can bar many categories of call. Account codes are another using service, as the codes can be marked as required for certain call categories.

	Name
	Description/Details

	call_cat_all
	Description
All outgoing calls EXCEPT EMERGENCY; really mutually exclusive with all other options, due to its scope.

Attribute Description: DMBOOL

	call_cat_local
	Description
All outgoing local calls.

Attribute Description: DMBOOL

	call_cat_intra_lata
	Description
All outgoing intra-LATA toll calls. Generalized Name: Local Toll

Attribute Description: DMBOOL

	call_cat_inter_lata
	Description
All outgoing inter-LATA toll calls. Generalized Name: Long Distance

Attribute Description: DMBOOL

	call_cat_intl
	Description
All outgoing International calls... (calls using country code/INTL dialing?)

Attribute Description: DMBOOL

	Reserved1Unused1b
	Description
Reserved for alternate use.

Attribute Description: DMBOOL

typedef struct {

DMBOOL call_cat_all : BFBOOL;

DMBOOL call_cat_local : BFBOOL;

DMBOOL call_cat_intra_lata : BFBOOL;

DMBOOL call_cat_inter_lata : BFBOOL;

DMBOOL call_cat_intl : BFBOOL;

DMBOOL call_cat_UnusedbReserved1 : BFBOOL;

DMBOOL call_cat_UnusedbReserved2: BFBOOL;

DMBOOL call_cat_UnusedbReserved3: BFBOOL;

DMBOOL call_cat_UnusedbReserved4: BFBOOL;

DMBOOL call_cat_UnusedbReserved5: BFBOOL;

DMBOOL call_cat_UnusedbReserved6: BFBOOL;

DMBOOL call_cat_UnusedbReserved7: BFBOOL;

DMBOOL call_cat_UnusedbReserved8: BFBOOL;

DMBOOL call_cat_UnusedbReserved9: BFBOOL;

DMBOOL call_cat_UnusedbReserved10: BFBOOL;

DMBOOL call_cat_UnusedbReserved11: BFBOOL;

DMBOOL call_cat_UnusedbReserved12: BFBOOL;
DMBOOL call_cat_Unused13b: BFBOOL;

DMBOOL call_cat_Unused14b: BFBOOL;

DMBOOL call_cat_Unused15b: BFBOOL;

DMBOOL call_cat_Unused16b: BFBOOL;

DMBOOL call_cat_Unused17b: BFBOOL;

DMBOOL call_cat_Unused18b: BFBOOL;

DMBOOL call_cat_Unused19b: BFBOOL;

DMUBYTE call_cat_Unused1;

} DM_CALL_CATEGORY;

8.2.17
DM_CALL_BARRING_PARM

Provides the variants of call barring (denial of outgoing calls); most variants are not mutually exclusive, so the representation is it fields rather than an enum. When the comment refers to "designated" numbers, it means digit strings entered in the dialling plan as aliases for that service; so service providers can choose different numbers for logical services like emergency and directory assistance as needed to accommodate differing country conventions.

</Description>`

.

	Name
	Description/Details

	categories
	Description
A set bit implies that barring is active for that category of call. Only the first 16 categories are valid for the call barring service ("all" through the end).

Attribute Description
DM_CALL_CATEGORY

	user_ctrl
	Description
A set bit implies that the end user (and only the end user) can set and clear the active status of the corresponding category (categories.xxx). Only the first 16 categories are valid for the call barring service ("all" through the end). These bits may only be set if the subscriber's feature bundle includes the TAS_USER_CTRL_CALL_BARRING service

Attribute Description
DM_CALL_CATEGORY

typedef struct {

DM_CALL_CATEGORY categories;

DM_CALL_CATEGORY user_ctrl;

} DM_CALL_BARRING_PARM;

8.2.18
DM_CALL_BLOCKING_PARM

Call blocking is a terminating feature. It performs call blocking (rejection) for incoming calls. This parameter identifies categories of call blocking.

	Name
	Description/Details

	block_all
	Description
Block all incoming calls

Attribute Description: DMBOOL

	block_intl
	Description
Block all incoming calls from extra-national endpoints (e.g. other country codes)

Attribute Description: DMBOOL

	user_ctl_all
	Description
DBYES means the user has the ability to change the block-all setting. User changes can be performed either via web portal or by dial code. Dial code attempts are accompanied by a PIN.

Attribute Description: DMBOOL

	user_ctl_intl
	Description
DBYES means the user has the ability to change the block-intl setting. User changes can be performed either via web portal or by dial code. Dial code attempts are accompanied by a PIN.

Attribute Description: DMBOOL

	Unused*
	Description
Available for future use.

Attribute Description: DMBOOL

typedef struct {

DMBOOL block_all : BFBOOL;

DMBOOL block_intl: BFBOOL;

DMBOOL user_ctrl_all : BFBOOL;

DMBOOL user_ctl_intl : BFBOOL;

DMBOOL Unused4b : BFBOOL;

DMBOOL Unused3b: BFBOOL;

DMBOOL Unused2b : BFBOOL;

DMBOOL Unused1b : BFBOOL;

DMUBYTE Unused2 BFBOOL;

DMUSHORT Unused2 : BFBOOL;

/* International deleted based on discussion 3/21*/

} DM_CALL_BLOCKING_PARM;

8.2.19
DM_CALL_TRANSFER_PARM

This data defines vriants of Call Transfer, at least one must be enabled for the service to exist (but Multi-way calling can be used to transfer too).

	Name
	Description/Details

	blind
	Description
Network blind transfer w/dialed code; blind means no checking with the transfer-to party before severing the current connection. The UE may implement call transfer On its own, and if it does, this wouldn’t be controlled or regulated at the TAS. This is left intact in case there is a flash implementation that would allow the TAS to control if blind transfer should be implemented

Attribute Description: DMBOOL

	consult
	Description
Network transfer w/consultation (flashhook). The transfer-to party is connected to the transferring party for discussion. Flashhook toggles between the two calls. Because flashhook is used, this option is mutually exclusive with Multiway Calling. The UE may implement call transfer on it’s own, and if it does, this wouldn’t be controlled or regulated at the TAS. This is in case there is a flash implementation that would allow the TAS to control if consultative transfer should be implemented.

Attribute Description: DMBOOL

typedef struct {

DMBOOL Unused7b: BFBOOL;

DMBOOL Unused6b: BFBOOL;

DMBOOL blind : BFBOOL;

DMBOOL consult : BFBOOL;

DMBOOL Unused5b: BFBOOL;

DMBOOL Unused4b: BFBOOL;

DMBOOL Unused3b: BFBOOL;

DMBOOL Unused2b: BFBOOL;

DMBOOL Unused1b: BFBOOL;

DMUSHORT Unused1: BFBOOL;

} DM_CALL_TRANSFER_PARM;

8.2.20
DM_CALLING_ID_PARM

Options of Calling Identification services. This parameter covers both Calling Number (CLIP/CLIR/CLIRO) and Calling Name (CNIP/CNIR) services, and both originations and terminations (some interactions require knowledge of both the origination and termination properties).

Unsubscribed action will be equivalent to public origination no caller-ID on termination.

	Name
	Description/Details

	clir
	Description
Originating and Terminating Feature] Specifies the standard treatment for this subscription. Note that this applies only to an INVITE; responses to INVITES are covered by .colr below(fuiture).

Attribute Description

DM_TAS_CALLING_ID_RESTRICT_ENUM

	clip
	Description
[Terminating Feature] Calling Line ID number presentation

Attribute Description: DMBOOL

	cnip
	Description
[Terminating Feature] Calling Line ID name presentation

Attribute Description: DMBOOL

typedef struct {

DM_TAS_CALLING_ID_RESTRICT_ENUM clir : BF_TAS_CALLING_ID_RESTRICT_ENUM;

DMBOOL clip : BFBOOL;

DMBOOL Unused8b: BFBOOL;

DMBOOL Unused7b: BFBOOL;

DMBOOL Unused6b: BFBOOL;

DMBOOL Unused6b: BFBOOL;

DMBOOL Unused4b: BFBOOL;

DMBOOL Unused3b: BFBOOL;

DMBOOL Unused2b: BFBOOL;

DMBOOL Unused1b: BFBOOL;

DMUBYTE Unused1f: 7;

DMUSHORT Unused1;

/*} DM_CALLING_ID_PARM;

8.2.21
DM_CF_ALL_PARM

< Customizing parameters for the Call Forward All (CFA) service (a.k.a. CF Variable – CFV or CFUnconditional) CFU). This service ignores the state of the endpoint, e.g. Busy, Idle, unregistered. The data are similar to other call forwarding services, but the VoiceMail handling is different. In particular, CFA/CFV is only assigned as a standalone feature - assigning VoiceMail won't do it. Thus there's no need for a dn_fwd_ok attribute, the service assignment bit carries that meaning.

Note that this structure is also used by the Selective Call services which may need to do forwarding (SCF, SCA).

	Name
	Description/Details

	vm_fwd_ok
	Description
Voice Mail assigned, i.e. this service is allowed to forward to voice mail. Updated by provisioning, based on the global status of voice-mail subscription. Might be set even if this service isn't assigned.

Attribute Description: DMBOOL

	edit_perm
	Description
Permissions the user has to change these call-forward settings.

Attribute Description: DM_TAS_CF_EDITING
Default: DM_CF_EDIT_FULL

	fwd_to_where
	Description
IF this service decides to forward a call, send it to the ID specified. So this field selects between the various (mutually exclusive) options for routing this call.

Attribute Description: DM_TAS_CF_MODE

	reveal_uri_options
	Description
Identifies the URI options that are specified for the terminating user with reference to the infomration conveyed or toward the forwarding user and the originating user

Attribute Description: REVEAL_URI_OPTIONS

	forward_to
	Description
ID to forward calls to; may be a partial dial string, might be a handle, could include carrier access codes, so it's not necessarily a PUID, but it can create one.

Attribute Description: DM_TAS_FORWARD_TO

typedef struct {

DMBOOL Unused11b: BFBOOL;

DMBOOL vm_fwd_ok : BFBOOL; /* redundant, derivable from
voicemail_#_provisioned */

DM_TAS_CF_EDITING edit_perm : BF_TAS_CF_EDITING;

DMBOOL Unused10b: BFBOOL;

DM_TAS_CF_MODE fwd_to_where : BF_TAS_CF_MODE;

DMBOOL Unused9b: BFBOOL;

DM_REVEAL_URI_OPTIONS reveal_uri_options; BF_REVEAL_URI_OPTIONS

DMBOOL Unused7b: BFBOOL;

DMBOOL Unused6b: BFBOOL;

DMBOOL Unused5b: BFBOOL;

DMBOOL Unused4b: BFBOOL;

DMBOOL Unused3b: BFBOOL;

DMBOOL Unused2b: BFBOOL;

DMBOOL Unused1b: BFBOOL;

DMTAS_FORWARD_TOVARBYTE forward_to;

} DM_CF_ALL_PARM;

8.2.22
DM_REVEAL_URI_OPTIONS

This data defines the enumerations of permissions for user-originated changes of Call Forwarding data.

	Enumeration
	Description/Details

	DM_GRUU_FALSE
	Description
URI should not be revealed

Attribute Description: Enumeration

	DM_NOT_REVEAL_GRUU
	Description
If the "gr" parameter is present and the served user has the subscription option "Served user allows the presentation of his/her URI to diverted to user, then Not reveal processing must occur attributes they don't use.)

Attribute Description: Enumeration

	DM_GRUU_TRUE
	Description
GRUU should be conveyed in full

Attribute Description: Enumeration

typedef enum {

DM_GRUU_FALSE,

DM_GRUU_ NOT_REVEAL_GRUU,

DM_GRUU_ TRUE

} REVEAL_URI_OPTIONS_
#define BF_ REVEAL_URI_OPTIONS_
2

8.2.23
DM_TAS_FORWARD_TO_PRESENTATION_OPTIONS

typedef struct { {

DMBOOL
notify-caller: BFBOOL;

REVEAL_URI_OPTIONS reveal-identity-to-caller: BF_ REVEAL_URI_OPTIONS,

REVEAL_URI_OPTIONS reveal-served-user-identity-to-caller: BF_ REVEAL_URI_OPTIONS;

DMBOOL
notify-served-user: BFBOOL;

DMBOOL
notify-served-user-on-outbound-call: BFBOOL;

REVEAL_URI_OPTIONS reveal-identity-to-target: BF_ REVEAL_URI_OPTIONS;

} DMTAS_FORWARD_TO_PRESENTATION_OPTIONS;

8.2.24
DM_CF_BUSY_PARM

Service parameters for Call Forward Busy (CFBL). Voice Mail number to forward to is globally stored. (Same elements as DM_CF_UNREG_PARM...)

	Name
	Description/Details

	vm_fwd_ok
	Description
Voice Mail assigned, i.e. this service is allowed to forward to voice mail. Updated by provisioning, based on the global status of voice-mail subscription.

Attribute Description: DMBOOL

	fwd_to_where
	Description
If this service decides to forward a call, send it to the ID specified. So this field selects between the various (mutually exclusive) options for routing this call.
Attribute Description: DM_TAS_CF_MODE

	edit_perm
	Description
Permissions the user has to change these call-forward settings.

Attribute Description: DM_TAS_CF_EDITING
Default: DM_CF_EDIT_FULL

	forward_to
	Description
ID to forward calls to; may be a partial dial string, might be a handle, could include carrier access codes, so it's not necessarily a PUID, but it can create one.

Attribute Description: DM_TAS_FORWARD_TO

typedef struct {

DMBOOL vm_fwd_ok : BFBOOL;

DMBOOL Unused11b: BFBOOL;

DMBOOL Unused10b: BFBOOL;
DM_TAS_CF_MODE fwd_to_where : BF_TAS_CF_MODE;

DMBOOL Unused9b: BFBOOL;

DMBOOL Unused8b: BFBOOL;
DM_TAS_CF_EDITING edit_perm : BF_TAS_CF_EDITING;

DMBOOL Unused7b: BFBOOL;

DMBOOL Unused6b: BFBOOL;

DMBOOL Unused5b: BFBOOL;

DMBOOL Unused4b: BFBOOL;

DMBOOL Unused3b: BFBOOL;

DMBOOL Unused2b: BFBOOL;

DMBOOL Unused1b: BFBOOL;

DMUSHORT Unused1;

DMTAS_FORWARD_TO forward_to;} DM_CF_BUSY_PARM;

8.2.25
DM_CF_NO_RESPONSE_PARM

Service parameters for Call Forward No Response/Answer (CFDA/CFNA). Because this feature may be assigned either for forward-to-number service or forward- not-answered-to-voice-mail, extra bits are required inside this parameter to indicate which services are actually allowed once this feature is assigned (i.e. call processing must screen activation attempts based on this internal data).

This service provides not only no-answer timing once alerting has started, but other non-busy error responses as well (all SIP non-success responses except 486, 480 and 600, which are captured by Call Forwarding Busy).

	Name
	Description/Details

	noresp_timer
	Description
Time to wait before declaring the "No Response" condition. Units are (seconds, rather than ring cycles?)
Attribute Description: DMTAS_VARBYTE

	vm_fwd_ok
	Description
Voice Mail assigned, i.e. this service is allowed to forward to voice mail. Updated by provisioning, based on the global status of voice-mail subscription.

Attribute Description: DMBOOL

	fwd_to_where
	Description
If this service decides to forward a call, send it to the ID specified. So this field selects between the various (mutually exclusive) options for routing this call.
Attribute Description: DM_TAS_CF_MODE

	edit_perm
	Description
Permissions the user has to change these call-forward settings.

Attribute Description: DM_TAS_CF_EDITING
Default: DM_CF_EDIT_FULL

	forward_to
	Description
ID to forward calls to; may be a partial dial string, might be a handle, could include carrier access codes, so it's not necessarily a PUID, but it can create one.

Attribute Description: DM_TAS_FORWARD_TO

typedef struct {

DMUBYTE noresp_timer;

DMBOOL vm_fwd_ok : BFBOOL;

DMBOOL Unused11b: BFBOOL;

DMBOOL Unused10b: BFBOOL;
DM_TAS_CF_MODE fwd_to_where : BF_TAS_CF_MODE;

DMBOOL Unused9b: BFBOOL;

DMBOOL Unused8b: BFBOOL;
DM_TAS_CF_EDITING edit_perm : BF_TAS_CF_EDITING;

DMBOOL Unused7b: BFBOOL;

DMBOOL Unused6b: BFBOOL;

DMBOOL Unused5b: BFBOOL;

DMBOOL Unused4b: BFBOOL;

DMBOOL Unused3b: BFBOOL;

DMBOOL Unused2b: BFBOOL;

DMBOOL Unused1b: BFBOOL;

DMUBYTE Unused1;

DMTAS_FORWARD_TO forward_to;} DM_CF_NO_RESPONSE_PARM;

8.2.26
DM_MULTIWAY_PARM

<Struct name = "DM_MULTIWAY_PARM">

Service parameters for Multiway Calling. This service does not provide advanced conferencing abilities, such as meet-me, recordings and the like.

	Name
	Description/Details

	n_way
	Description
The number of members allowed to be joined as a single call. The subscriber (near-end) leg is included in this number.

Attribute Description: DMUBYTE

Default Value: 3

	do_transfer
	Description
Applies primarily to 3-way calling -- specifies the treatment of other legs when the controller of the call hangs up. If DBYES, then the remaining parties stay connected ("transfer from 3-way call"); if DBNO, all connections are torn down.

Attribute Description: DMBOOL

typedef struct {

DMUBYTE n_way;

DMBOOL do_transfer : BFBOOL;

DMULONG Unused1f: 7;

DMUSHORT Unused1;} DM_MULTIWAY_PARM;

3GPP

