3GPP TSG CT WG4 Meeting #39
C4-081248
Cape Town, South-Africa, 5th – 9th May 2008

Source:
Alcatel-Lucent
Title:
Pseudo-CR on Study on IMS Application Server Service Data Descriptions for AS interoperability - A binary storage approach to defining IMS service data
Spec:
3GPP TS 29.864 v 0.3.1
Agenda item:
6.2.2
Document for:
Decision

1. Introduction

One implementation or definition option for application server data is presented in section 8.1. This is a definition that aims to be the most information efficient method. Its definition is consistent with the extensibility and backward compatibility rules which already exist in section 7.
2. Reason for Change

This begins to identify a mechanism for application data description.
3. Conclusions

<Conclusion part (optional)>

4. Proposal

It is proposed to agree the following changes to 3GPP TS 29.864.

* * * First Change * * * *

8
Alternative solutions

8.1

Introduction
Editor’s note: This section will contain all the possible solutions presented and the changes required in the specifications to implement them.
The foundations of an approach to storing subscriber data supporting an IMS Application server are presented.

Editors Note: this section does not yet address the complete list of features within section 6. It should be enhanced to capture this data.

8.2

A binary storage approach to defining IMS service data
8.2.0
Service Data Description
The definition of TAS service data contained in this section is one realizable mechanism of defining supplementary service data for a Telephony application server. It contains a space efficient, therefore transmission bandwidth efficient mechanism for defining data associated with Telephony supplementary services in an IMS environment.

With a telephony application server, some data pertains to the handset, whereas other data applies to each address tied to the handset.

The 3GPP data model for IMS comes in 2 variants. This exercise selected the simpler of the 2 formats. This model is shown as (3GPP 23.228 [22] section 4.3.3.4). This is repeated in Figure 8.2.1.

[image: image1.wmf]IMS

Subscription

Private

User Identity

Public

User Identity

Public

User Identity

Public

User Identity

Service

Profile

Service

Profile

Figure 8.2.1: 3GPP Data Model Structure
The AS may have requirements to keep data scoped to each of the boxes identified in the above figure. This assumes that each PUID may have independent features. The TAS structure to model is shown in Figure 8.2.2. Implementations have shown that this can be achieved with databases identified in boxes in this figure.

In the definition that follows, only the shaded portion of this figure may apply when the PUIDs share the same services. Alternately, different services or may apply for each PUID within a subscription, and in those instances, the additional services, (or selection list or simultaneous_ring, etc.) databases may apply. Subscribers with more complex features and data additions, such as Selection features (screening, etc.) and Simultaneous Ringing (Flexible Alerting) require separate databases. Since the Sh interface provides a query for PUIDs within the subscription, the information defining the related PUIDs can be obtained via Sh query, and not maintained on the TAS. The Party database only contains data which applies across all PUIDs. Extensions to the defined list of databases are addressed in section 7.2

[image: image2.wmf]

PUID

PUID

*

PUID

Flex_Alert

*

Party

ESRNs

*

Services

*

Selection_

List4x4

*

Flex_Alert

*

Services

*

Selection_

Li

st4x4

*

Figure 8.2.2: Association of Services across PUIDs
The information listed in this section contains detailed data fields required to support IMS Telephony services defined with in 3GPP.
The data supporting the Services database is listed first in a descriptive XML language, representing the documentation of the necessary data. This is immediately followed by the C style data definitions. It is a binary representation of this structure that will be base64 encoded into the Sh interface within the User-Data AVP.

Reserved indicates that this value is currently used for masked capabilities. Unused indicates the data assignment may be reassigned to new functionalities.

8.2.1
Services Data Definition

<TableDef name = "SERVICES RELEASE1" repl = "yes">

<Description>

This is the main structure for call service

data

This is essentially per-subscriber data, but for

aliases multiple PUIDs can point to a single entry.

</Description>

<ColumnDef name="svcs_hdr">

<Description>

Carries the release identifier for this structure

 (0001) and the overall length

of this block (fixed + variable, including this

header, padded to four bytes)

</Description>

<ColumnDomain domain="DM_TAS_DB_HEADER_WITH_LEN"/>

</ColumnDef>

<ColumnDef name="svcs_asgn">

<Description>

This carries the boolean indications per service

whether it is assigned for this subscription or

not (DBYES=YES...). Indexed by DM_TAS_SERVICE_ID.

</Description>

<ColumnDomain domain="DM_TAS_SERVICE_STAT"/>

</ColumnDef>

<ColumnDef name="svcs_actv">

<Description>

This carries the boolean indications per

service whether it is currently activated for

this subscription or not (DBYES=YES...).

Indexed by DM_TAS_SERVICE_ID.

Should be YES only if already assigned.

(Note that it's a big bit field, not an

array of dmubytes.)

</Description>

<ColumnDomain domain="DM_TAS_SERVICE_STAT"/>

</ColumnDef>

<ColumnDef name="svcs_by_puid">

<Description>

This carries the boolean indications per

service whether the service data should

come from the per-PUID definition or from

the primary PUID are stored here.

Initially, the per-PUID data

are stored in the FEATIDX belonging

to the Default Originating PUID, a.k.a.

the Primary PUID. So that tuple will have

all bits set to DBNO, as there's nowhere

else to go. Another initial decision is that

very few features are permitted to be

per-PUID. Provisioning should enforce that.

Finding the services for a PUID thus

requires checking that its featidx is different

than that of the "party" common feature set,

and if yes, then taking those service

parameters whose svcs_by_puid bits are

set in the local PUID from its SERVICES,

and the rest from the SERVICES tuple

of the common party features. Note that

potentially the Party has features assigned

which the PUID reserves but doesn't have

assigned.

Again indexed by DM_TAS_SERVICE_ID.

(Note that it's a big bit field, not an

array of DMUBYTEs.)

</Description>

<ColumnDomain domain="DM_TAS_SERVICE_STAT"/>

</ColumnDef>

<ColumnDef name = "barring_parm">

<Description>

Parameters for TAS_CALL_BARRING

</Description>

<ColumnDomain domain = "DM_CALL_BARRING_PARM"/>

</ColumnDef>

<ColumnDef name = "blocking_parm">

<Description>

Customization parameters for TAS_CALL_BLOCKING

</Description>

<ColumnDomain domain = "DM_CALL_BLOCKING_PARM"/>

</ColumnDef>

<ColumnDef name = "transfer_parm">

<Description>

Customization parameters for TAS_CALL_TRANSFER

</Description>

<ColumnDomain domain = "DM_CALL_TRANSFER_PARM"/>

</ColumnDef>

< ColumnDef name = "vm_forward_to">

<Description>

Number to use when forwarding to voice mail.

Normally also the number the user enters

to retrieve voice mail. Stored here because

it's used by several services.

</Description>

<ColumnDomain domain = "DMTAS_FORWARD_TO"/>

</ColumnDef>

<ColumnDef name = "cf_var_parm">

<Description>

Parameters for TAS_CF_ALL (CFV)

</Description>

<ColumnDomain domain = "DM_CF_ALL_PARM"/>

</ColumnDef>

<ColumnDef name = "cf_busy_parm">

<Description>

Parameters for TAS_CF_BUSY (CFBL)

</Description>

<ColumnDomain domain = "DM_CF_BUSY_PARM"/>

<RuleDef>

! alias_cfd must be DBNO for CFB in database

$t:always([@$c/@alias_cfd = 'DBNO])

</RuleDef>

</ColumnDef>

<ColumnDef name = "cf_noresp_parm">

<Description>

Parameters for TAS_CF_NO_RESPONSE (CFNR/CFDA)

</Description>

<ColumnDomain domain = "DM_CF_NO_RESPONSE_PARM"/>

<RuleDef>

% alias_cfd is not provisionable, set

% dynamically by ASDA only on delivery

! alias_cfd must be DBNO for CFNA in database

$t:always([@$c/@alias_cfd = 'DBNO])

</RuleDef>

</ColumnDef>

<ColumnDef name = "cf_default_parm">

<Description>

Parameters for TAS_CF_DEFAULT (CFD).

</Description>

<ColumnDomain domain = "DM_CF_DEFAULT_PARM"/>

<RuleDef>

% No internal parameter checks

</RuleDef>

</ColumnDef>

<ColumnDef name = "carrier_sel_parm">

<Description>

Parameters for TAS_CARRIER_SEL

</Description>

<ColumnDomain domain = "DM_CARRIER_SEL_PARM"/>

</ColumnDef>

<ColumnDef name = "clid_parm">

<Description>

Parameters for TAS_CALLING_LINE_ID_PRESENTATION

</Description>

<ColumnDomain domain = "DM_CALLING_ID_PARM"/>

<RuleDef>

% Default (unassigned) is edit_clir == DBNO

% edit_clir is only allowed in cases where

% per-call privacy override is also allowed.

! Calling ID edit_clir cannot be YES if clir is a Permanent type

$t:empty([@$c/@edit_clir = 'DBYES and

(@$c/@clir = 'DM_ID_RESTRICT_PERM_PRIVATE or

 @$c/@clir = 'DM_ID_RESTRICT_PERM_PUBLIC)])

</RuleDef>

</ColumnDef>

<ColumnDef name = "multiwaycall_parm">

<Description>

Parameters for TAS_MULTIWAY_CALLING

</Description>

<ColumnDomain domain = "DM_ MULTIWAY_PARM"/>

<RuleDef>

% N-way must be 3, no larger if Alternate 3-Way Calling is assigned

! Multiway Calling must be 3-way when Alternate 3-Way calling is assigned

$t:empty([@$c/@n_way > 3 and

@flashorig_parm/@call2_flash = 'DM_FLASHO_ALT_3WAY])

</RuleDef>

</ColumnDef>

<Comment>

 <!--
END: SERVICES RELEASE1
-->

</Comment>

</TableDef>

typedef struct {

DM_TAS_DB_HEADER_WITH_LEN svcs_hdr;

DM_TAS_SERVICE_STAT svcs_asgn;

DM_TAS_SERVICE_STAT svcs_actv;

DM_TAS_SERVICE_STAT svcs_by_puid;

DM_CALL_BARRING_PARM barring_parm;

DM_CALL_BLOCKING_PARM blocking_parm;

DM_CALL_TRANSFER_PARM transfer_parm;

DMTAS_VARBYTE vm_ftn;

DM_CF_ALL_PARM cf_var_parm;

DM_CF_BUSY_PARM cf_busy_parm;

DM_CF_NO_RESPONSE_PARM cf_noresp_parm;

DM_CALLING_ID_PARM clid_parm;

DM_MULTIWAY_PARM multiwaycall_parm;

} SERVICES_RELEASE1;

As an example of a separate database, we could use the CUG example

typedef struct {

DM_TAS_DB_HEADER_WITH_LEN svcs_hdr;

DM_TAS_SERVICE_STAT svcs_asgn;

DM_TAS_SERVICE_STAT svcs_actv;

DM_TAS_SERVICE_STAT svcs_by_puid;

DM_CUG_TYPE1 cug _data1;

DM_CUG_TYPE2 cug_data2;

} FlexAlert_RELEASE1;

<

8.2.2
DMTAS_FORWARD_TO

<Domain="DMTAS_FORWARD_TO" type="DMTAS_URIVARBYTE" ioType="AlphaNumeric" presentation="Raw">

<Description>

Forward-to numeric string, which will be processed by Digit Analysis and E.164 conversion. Might be

in E.164 format already, but it could also be a sequence of digits, maybe even with an access code

(account code, authorization code, carrier selection...). Not a URI - no prefix, no domain;

it's not even an implied URI, unlike DMPUID_USER. This is a request URI, and so

may have parameters and access codes which are not directly part of the destination address.

The size is somewhat arbitrary, but should be large enough to handle the various codes besides

a directory number which might appear. The size is not actually large enough to hold all

possible combinations. SEE ALSO: DMTAS_DN, when no invocation or

access codes are permitted (e.g. ESRNs) and it's got to be a number.

The DMTAS_FORWARD_TO should be composed of at most 32 bytes as variable length data.

</Description>

</Domain>

typedef DMTAS_URI
DMTAS_FORWARD_TO;

8.2.3
DMTAS_DN

Not Used in VzW Phase 0.

Array name="DMTAS_DN" type="VARCHAR" size="16" ioType="AlphaNumeric" presentation="Raw">

<Description>

An ASCII DN string; primarily a digit-string received from another switch, generally E.164.

Note that this is not large enough to hold all user-dialed strings, which can include

dialcodes and other prefixes.

This is a real string, i.e. null-terminated. 16 characters are allocated to allow room for

the '+' character used in SIP to indicate that a number is fully-resolved, i.e. E.164. E.164

numbers are at most 15 digits.

</Description>

</Array>

typedef char DMTAS_DN[16 + 1];

#define SZTAS_DN
16

8.2.4
DMULONG

Typedef unsigned long DMULONG;

8.2.5
DMUSHORT

Typedef unsigned short
DMUSHORT;

8.2.6
DMUBYTE

<SimpleDomain name="DMUBYTE" type="UTINYINT">

<Description>

An Unsigned Byte type, so that it's clear this is not a single character (e.g. 'a') but a

numeric element. No type called byte is defined in the C/C++

Language, but an unsigned 8 bit char is defined. We use Unsiged Char to define a UByte

</Description>

</SimpleDomain>

typedef unsigned char DMUBYTE;

8.2.7
DMTAS_VARBYTE
Struct name = " DMTAS_VARBYTE " cross-platform = "no">

<Description>

Identifies the structural contents of a variable length

Byte definition.

</Description>

<FieldDef name = "vdata_offset release">

<Description>

This field is the starting byte count relative to the start of the release

</Description>

<ColumnDomain domain = " unsigned short "/>

</FieldDef>

<FieldDef name = "vdata_len rls_size">

<Description>

The byte count of the variable length contents,

</Description>

<ColumnDomain domain = " unsigned short "/>

</FieldDef>

</Struct>

typedef struct { {

unsigned short
vdata_offset;
/* byte offset from release start */

unsigned short
vdata_len;

/* length in octets */

} DMTAS_VARBYTE;

8.2.8
DMTAS_VARSTRING

< Typedef name = "DMTAS_VARSTRING" >

<Description>

A VARBYTE subtype used to hold string data.

Nominally these data are of type UTF-8, although

the length is still specified in bytes not characters.

Being a string, Null characters are not legal.

Initially, the character set is restricted to printable

ASCII, plus white space.

</Description>

<type domain = "DMTAS_VARBYTE">

</Typedef>

typedef DMTAS_VARBYTE
DMTAS_VARSTRING;
8.2.9
DMTAS_URI

< Typedef name = "DMTAS_URI" >

<Description>

A VARSTRING subtype used to hold URIs.

Primarily sip: or tel:, the URI type is restricted

to the general URI layout and character set.

Semantically it must also be an acceptable request,

erequests may be strings of digits which are

meaningful to a TAS but do not map to a destination

(e.g. service access codes).

</Description>

<type domain = "DMTAS_VARSTRING">

</Typedef>

typedef DMTAS_VARSTRING

DMTAS_URI;

8.2.10
HEADER WITH LENGTH

Struct name = "DM_TAS_DB_HEADER_WITH_LEN" cross-platform = "no">

<Description>

Identifies the structural contents of a release in a database.

</Description>

<FieldDef name = " release">

<Description>

This field is unique for a data definition. It identifies which data definition should be

Applied in order to interpret the release

</Description>

<ColumnDomain domain = " unsigned short "/>

</FieldDef>

<FieldDef name = " rls_size">

<Description>

The byte count of the release contents length, including variable length contents that the

release may contain.

</Description>

<ColumnDomain domain = " unsigned short "/>

</FieldDef>

</Struct>

typedef struct {

unsigned short
release;
/* Version ID */

unsigned short
rls_size;
/* length in octets */

} DM_TAS_DB_HEADER_WITH_LEN;

8.2.11
TAS_SERVICE_STAT

<Array name="DM_TAS_SERVICE_STAT" type="UBYTE" size="8">

<Description>

This array exists in order to encapsulate the size of the service list for reuse elsewhere.

This should be accessed as a set of boolean bits, indexed by DM_TAS_SERVICE_ID.

</Description>

</Array>

Typedef dmubyte DM_TAS_SERVICE_STAT[8];

#define SZ_TAS_SERVICE_STAT
8

8.2.12
DM_TAS_CALLING_ID_RESTRICT_ENUM

<Enum name = "DM_TAS_CALLING_ID_RESTRICT_ENUM" size = "8">

<Description>

The variant of Calling ID Restriction which is in place. Note that most of these apply to

both Calling Line and Calling Name Presentation/Restriction (CLIP/CLIR, CNIP/CNIR).

This enumeration specifies the treatment/labeling of IDs in INVITEs and responses to INVITEs.

Unsubscribed is equivalent to PERM_PUBLIC.

</Description>

<EnumValue name = "DM_ID_RESTRICT_PERM_PRIVATE">

<Description>

Permanent Private.

"Never" present this calling ID (apart from OVERRIDE features).

</Description>

</EnumValue>

<EnumValue name = "DM_ID_RESTRICT_PRIVATE">

<Description>

The default state is to not present the ID, but the caller can change this per call with a dialed code.

</Description>

</EnumValue>

<EnumValue name = "DM_ID_RESTRICT_PUBLIC">

<Description>

The default state is to present the ID, but the caller can change this per call with a
dialed code.

</Description>

</EnumValue>

<EnumValue name = "DM_ID_RESTRICT_PERM_PUBLIC">

<Description>

Permanent Public.

"Always" present this calling ID to the network (whether called party receives it

of course depends on their subscription).

</Description>

</EnumValue>

<Comment>

 <!--
END: DM_TAS_CALLING_ID_RESTRICT_ENUM
-->

</Comment>

</Enum>

typedef enum {

DM_ID_RESTRICT_PERM_PRIVATE,

DM_ID_RESTRICT_PRIVATE,

DM_ID_RESTRICT_PUBLIC,

DM_ID_RESTRICT_PERM_PUBLIC

} DM_TAS_CALLING_ID_RESTRICT_ENUM;

#define BF_TAS_CALLING_ID_RESTRICT_ENUM
8

8.2.13
DM_TAS_CF_EDITING

Editors Note: to be supplied

<Enum name = "DM_TAS_CF_EDITING" size = "2">

<Description>

Enumeration of permissions for user-originated

changes of Call Forwarding data.

</Description>

<EnumValue name = "DM_CF_EDIT_FULL">

<Description>

User has full permission,

i.e. can activate and deactivate the

service, and can change the forward-to

destination.

[Default]

</Description>

</EnumValue>

<EnumValue name = "DM_CF_EDIT_PARTIAL">

<Description>

User has only partial permission,

i.e. can only activate and deactivate

the service. This means that other

fields cannot be changed by the user,

such as forward-to destination,

bearer-based options, or changes to the

timeout value. (Not all services have

these attributes, some may have other

attributes, and some services may have

attributes they don't use.)

</Description>

</EnumValue>

<EnumValue name = "DM_CF_EDIT_NONE">

<Description>

User has no permission,

so can neither activate/deactivate the

service, nor change the forward-to

destination.

</Description>

</EnumValue>

</Enum>

typedef enum {

DM_CF_EDIT_FULL,

DM_CF_EDIT_PARTIAL,

DM_CF_EDIT_NONE

} DM_TAS_CF_EDITING;

#define BF_TAS_CF_EDITING
2

8.2.14
DM_TAS_CF_MODE

<Enum name = "DM_TAS_CF_MODE" size = "2">

<Description>

Enumeration of possible forward-to options

for call-forwarding services.

Note that this implementation means that the

forwarding options are mutually exclusive (a

single call can only be forwarded to one place),

and activations are memoryless (one can't

activate one mode, activate a second,

deactivate the second, and expect the first

mode to be used).

</Description>

<EnumValue name = "DM_CF_TO_DN">

<Description>

Forwarding should use the PUID

specified by this specific service

(normally user-programmable).

</Description>

</EnumValue>

<EnumValue name = "DM_CF_TO_VM">

<Description>

Forwarding should go to the VoiceMail

Service number provisioned for this

subscriber.

</Description>

</EnumValue>

<EnumValue name = "Reserved">

<Description>

Reserved

</Description>

</EnumValue>

<EnumValue name = "DM_CF_TO_SPARE1">

<Description>

</Description>

</EnumValue>

<Comment>

 <!--
END: DM_TAS_CF_MODE
-->

</Comment>

</Enum>

typedef enum {

DM_CF_TO_DN,

DM_CF_TO_VM,

Reserved

DM_CF_TO_SPARE1

} DM_TAS_CF_MODE;

#define BF_TAS_CF_MODE
2

8.2.15
DM_TAS_SERVICE_ID

<Enum name = "DM_TAS_SERVICE_ID" size = "12">

 <Description>

Enumerates the services supplied by the organic

Telephony Application Server (TAS).

Many services have feature parameters in

SERVICES, in addition to their basic

assigned/active status.

The enumerations are

numbered, so that the bitmaps in data (DM_TAS_SERVICE_STAT)

won't shift when new members are added or deleted

They should stay in numeric order!

Note the END entry (at the end of the list); this can be

used both as a loop boundary and in size declarations.

Empty descriptions represent proposed but not

committed/defined/implemented services.

(Unused services, and holes in the numbering, are to

some extent left around to provide spares for field

use, as well as biding time until the unused service is

actually implemented.)

Reserved values represent ranges that should not be reused.

If the number is listed as unused, it truly is, if thenumber is

not listed, it’s also unused.

The size covers all possible values, although most uses

are limited to the size implied by TAS_END_OF_SERVICES.

 </Description>

typedef enum {

VM_FTN = 1,

TAS_CALLING_LINE_ID_PRESENTATION = 2,

TAS_CALL_BARRING = 3,

TAS_CALL_BLOCKING = 4,

TAS_CALL_TRANSFER = 5,

TAS_CALL_WAITING = 6,

TAS_CF_ALL = 7,

TAS_CF_BUSY =8,

TAS_CF_NO_RESPONSE = 9,

TAS_DO_NOT_DISTURB = 10,

TAS_MULTIWAY_CALLING = 11,

TAS_CF_NOT_LOGGED_IN = 12,

TAS_CF_NOT_REACHABLE = 13,

TAS_COMMUNICATION_DEFLECTION = 14,

TAS_CF_DIVERSION NOTIFICATION = 15,

TAS_ORIGINATION_ID_RESTRICTION = 16,

TAS_TERMINATION_ID_RESTRICTION = 17,

TAS_TERMINATION_ID_RESTRICTION = 18,

TAS_MALICIOUS_COMMUNICATION_IDENTIFICATION = 19,

TAS_MALICIOUS_COMMUNICATION_IDENTIFICATION_TEMP = 20

TAS_COMMUNICATIONS_HOLD = 21,

TAS_MESSAGE_WAITING_INDICATION = 22,

TAS_REVERSE_CHARGING = 23,

TAS_CLOSED_USER_GROUP = 24,

TAS_FLEXIBLE_ALERT = 25,

TAS_CCBS/CCNR = 26,

TAS_AOC-S = 27,

TAS_AOC-D = 28,

TAS_AOC-A = 29,

TAS_END_OF_SERVICES = 30,

} DM_TAS_SERVICE_ID;

#define BF_TAS_SERVICE_ID
30
8.2.16
DM_CALL_CATEGORY
<Struct name = "DM_CALL_CATEGORY" cross-platform = "no">

<Description>

Provides most of the variants of call classification

determined by Digit Analysis, plus a few other

categories. Most variants are not

mutually exclusive, so the representation is

bitfields rather than an enum.

When the comment refers to "designated"

numbers, it means digit strings entered in the

dialing plan as aliases for that service; so

service providers can choose different numbers

for logical services like emergency and directory

assistance as needed to accommodate differing

country conventions.

This particular structure provides

category data for several different services,

which is why it isn't a PARM all by itself.

The most obvious service is Call Barring, which

can bar many categories of call. Account

codes are another using service, as the codes

can be marked as required for certain call

categories.

</Description>

<FieldDef name = "call_cat_all">

<Description>

All outgoing calls EXCEPT EMERGENCY;

really mutually exclusive with all

other options, due to its scope.

</Description>

<ColumnDomain domain = "DMBOOL"/>

</FieldDef>

<FieldDef name = "call_cat_local">

<Description>

All outgoing local calls.

</Description>

<ColumnDomain domain = "DMBOOL"/>

</FieldDef>

<FieldDef name = "call_cat_intra_lata">

<Description>

All outgoing intra-LATA toll calls.

Generalized Name: Local Toll

</Description>

<ColumnDomain domain = "DMBOOL"/>

</FieldDef>

<FieldDef name = "call_cat_inter_lata">

<Description>

All outgoing inter-LATA toll calls.

Generalized Name: Long Distance

</Description>

<ColumnDomain domain = "DMBOOL"/>

</FieldDef>

<FieldDef name = "call_cat_intl">

<Description>

All outgoing International calls...

(calls using country code/INTL dialing?)

</Description>

<ColumnDomain domain = "DMBOOL"/>

</FieldDef>

<FieldDef name = "Reserved1Unused1b">

<Description>

Reserved for alternate use.

</Description>

<ColumnDomain domain = "DMBOOL"/>

</FieldDef>

<FieldDef name = "Reserved2Unused2b">

<Description>

Reserved for alternate use.

</Description>

<ColumnDomain domain = "DMBOOL"/>

</FieldDef>

<FieldDef name = "Reserved3">

<Description>

Reserved for alternate use.

</Description>

<ColumnDomain domain = "DMBOOL"/>

</FieldDef>

<FieldDef name = "Reserved4">

<Description>

Reserved for alternate use.

</Description>

<ColumnDomain domain = "DMBOOL"/>

</FieldDef>

<FieldDef name = "Reserved5">

<Description>

Reserved for alternate use.

</Description>

<ColumnDomain domain = "DMBOOL"/>

</FieldDef>

<FieldDef name = "Reserved6">

<Description>

Reserved for alternate use.

</Description>

<ColumnDomain domain = "DMBOOL"/>

</FieldDef>

<FieldDef name = "Reserved7">

<Description>

Reserved for alternate use.

</Description>

<ColumnDomain domain = "DMBOOL"/>

</FieldDef>

<FieldDef name = "Reserved8">

<Description>

Reserved for alternate use.

</Description>

<ColumnDomain domain = "DMBOOL"/>

</FieldDef>

<FieldDef name = "Reserved9">

<Description>

Reserved for alternate use.

</Description>

<ColumnDomain domain = "DMBOOL"/>

</FieldDef>

<FieldDef name = "Reserved10">

<Description>

Reserved for alternate use.

</Description>

<ColumnDomain domain = "DMBOOL"/>

</FieldDef>

<FieldDef name = "Reserved11">

<Description>

Reserved for alternate use.

</Description>

<ColumnDomain domain = "DMBOOL"/>

</FieldDef>

<FieldDef name = "Reserved12">

<Description>

Reserved for alternate use.

</Description>

<ColumnDomain domain = "DMBOOL"/>

</FieldDef>

</Struct>

typedef struct {

DMBOOL call_cat_all : BFBOOL;

DMBOOL call_cat_local : BFBOOL;

DMBOOL call_cat_intra_lata : BFBOOL;

DMBOOL call_cat_inter_lata : BFBOOL;

DMBOOL call_cat_intl : BFBOOL;

DMBOOL call_cat_UnusedbReserved1 : BFBOOL;

DMBOOL call_cat_UnusedbReserved2: BFBOOL;

DMBOOL call_cat_UnusedbReserved3: BFBOOL;

DMBOOL call_cat_UnusedbReserved4: BFBOOL;

DMBOOL call_cat_UnusedbReserved5: BFBOOL;

DMBOOL call_cat_UnusedbReserved6: BFBOOL;

DMBOOL call_cat_UnusedbReserved7: BFBOOL;

DMBOOL call_cat_UnusedbReserved8: BFBOOL;

DMBOOL call_cat_UnusedbReserved9: BFBOOL;

DMBOOL call_cat_UnusedbReserved10: BFBOOL;

DMBOOL call_cat_UnusedbReserved11: BFBOOL;

DMBOOL call_cat_UnusedbReserved12: BFBOOL;
DMBOOL call_cat_Unused13b: BFBOOL;

DMBOOL call_cat_Unused14b: BFBOOL;

DMBOOL call_cat_Unused15b: BFBOOL;

DMBOOL call_cat_Unused16b: BFBOOL;

DMBOOL call_cat_Unused17b: BFBOOL;

DMBOOL call_cat_Unused18b: BFBOOL;

DMBOOL call_cat_Unused19b: BFBOOL;

DMUBYTE call_cat_Unused1;

} DM_CALL_CATEGORY;

8.2.17
DM_CALL_BARRING_PARM

<Struct name = "DM_CALL_BARRING_PARM" cross-platform = "yes">

<Description>

Provides the variants of call barring (denial of outgoing calls); most variants are not

mutually exclusive, so the representation is it fields rather than an enum.

When the comment refers to "designated"
numbers, it means digit strings entered in the

dialling plan as aliases for that service; so service providers can choose different numbers

for logical services like emergency and directory
assistance as needed to accommodate differing

country conventions.

</Description>

<FieldDef name = "categories">

<Description>

A set bit implies that barring is
active for that category of call.

Only the first 16 categories are
valid for the call barring service

("all" through the end).

</Description>

<ColumnDomain domain = "DM_CALL_CATEGORY"/>

</FieldDef>

<FieldDef name = "user_ctrl">

<Description>

A set bit implies that the end user (and only the end user) can set and

clear the active status of the corresponding category (categories.xxx).

Only the first 16 categories are valid for the call barring service

("all" through the end).
These bits may only be set if the

subscriber's feature bundle includes the TAS_USER_CTRL_CALL_BARRING service.

</Description>

<ColumnDomain domain = "DM_CALL_CATEGORY"/>

</FieldDef>

</Struct>

typedef struct {

DM_CALL_CATEGORY categories;

DM_CALL_CATEGORY user_ctrl;

/* the user_ctl appears to not have phase 0 requiremetns, so we expect the bits to always be 0’s for phase 0 e.g. no parental control*/

} DM_CALL_BARRING_PARM;

8.2.18
DM_CALL_BLOCKING_PARM

<Struct name = "DM_CALL_BLOCKING_PARM" cross-platform = "no">

To Be further Specified

< </Struct>

typedef struct {

DMBOOL block_all : BFBOOL;

DMBOOL Unused6bUnused1b: BFBOOL;

DMBOOL user_ctrl_all : BFBOOL;

DMBOOL Unused5b : BFBOOL;

DMBOOL Unused4b : BFBOOL;

DMBOOL Unused3b: BFBOOL;

DMBOOL Unused2b : BFBOOL;

DMBOOL Unused1b : BFBOOL;

DMUBYTE Unused2 BFBOOL;

DMUSHORT Unused2 : BFBOOL;

/* International deleted based on discussion 3/21*/

} DM_CALL_BLOCKING_PARM;

8.2.19
DM_CALL_TRANSFER_PARM

Struct name = "DM_CALL_TRANSFER_PARM" cross-platform = "no">

<Description>

Variants of Call Transfer, at least one must be enabled for the service to exist (but

Multi-way calling can be used to transfer too).

</Description>

<FieldDef name = "blind">

<Description>

Network blind transfer w/dialed code; blind means no checking with the

transfer-to party before severing the current connection.

The UE may implement call transfer On its own, and if it does, this wouldn’t be

controlled or regulated at the TAS. This is left intact in case there is a flash implementation

that would allow the TAS to control if blind transfer should be implemented.

</Description>

<ColumnDomain domain = "DMBOOL"/>

</FieldDef>

<FieldDef name = "consult">

<Description>

Network transfer w/consultation (flashhook). The transfer-to party is connected to

the transferring party for discussion. Flashhook toggles between the two calls.

Because flashhook is used, this option is mutually exclusive with Multiway Calling.

The UE may implement call transfer on it’s own, and if it does, this wouldn’t be

controlled or regulated at the TAS. This is in case there is a flash implementation

that would allow the TAS to control if consultative transfer should be implemented.

</Description>

<ColumnDomain domain = "DMBOOL"/>

</FieldDef>

</Struct>

typedef struct {

DMBOOL Unused7b: BFBOOL;

DMBOOL Unused6b: BFBOOL;

DMBOOL blind : BFBOOL;

DMBOOL consult : BFBOOL;

DMBOOL Unused5b: BFBOOL;

DMBOOL Unused4b: BFBOOL;

DMBOOL Unused3b: BFBOOL;

DMBOOL Unused2b: BFBOOL;

DMBOOL Unused1b: BFBOOL;

DMUSHORT Unused1: BFBOOL;

} DM_CALL_TRANSFER_PARM;

8.2.20
DM_CALLING_ID_PARM

<Struct name = "DM_CALLING_ID_PARM" cross-platform = "no">

<Description>

Options of Calling Identification services.

This parameter covers both Calling Number

(CLIP/CLIR/CLIRO) and Calling Name (CNIP/CNIR)

services, and both originations and terminations

(some interactions require knowledge of both the

origination and termination properties).

Unsubscribed action will be equivalent to

public origination

no caller-ID on termination.

</Description>

<FieldDef name = "clir">

<Description>

[Originating and Terminating Feature]

Specifies the standard treatment for this

subscription. Note that this applies

only to an INVITE; responses to INVITES

are covered by .colr below(fuiture).

</Description>

<ColumnDomain domain = "DM_TAS_CALLING_ID_RESTRICT_ENUM"/>

</FieldDef>

<FieldDef name = "clip">

<Description>

[Terminating Feature]

Calling Line ID number presentation

</Description>

<ColumnDomain domain = "DMBOOL"/>

</FieldDef>

<FieldDef name = "cnip">

<Description>

[Terminating Feature]

Calling Line ID name presentation

</Description>

<ColumnDomain domain = "DMBOOL"/>

</FieldDef>

</Struct>

typedef struct {

DM_TAS_CALLING_ID_RESTRICT_ENUM clir : BF_TAS_CALLING_ID_RESTRICT_ENUM;

DMBOOL clip : BFBOOL;

DMBOOL Unused8b: BFBOOL;

DMBOOL Unused7b: BFBOOL;

DMBOOL Unused6b: BFBOOL;

DMBOOL Unused6b: BFBOOL;

DMBOOL Unused4b: BFBOOL;

DMBOOL Unused3b: BFBOOL;

DMBOOL Unused2b: BFBOOL;

DMBOOL Unused1b: BFBOOL;

DMUBYTE Unused1f: 7;

DMUSHORT Unused1;

/*} DM_CALLING_ID_PARM;

8.2.21
DM_CF_ALL_PARM

<Struct name = "DM_CF_ALL_PARM" cross-platform = "no">

<Description>

Customizing parameters for the Call Forward All (CFA)

service (a.k.a. CF Variable – CFV or CFUnconditional) CFU).

This service ignores the state of the endpoint, e.g.

Busy, Idle, unregistered.

The data are similar to other call forwarding

services, but the VoiceMail handling is different.

In particular, CFA/CFV is only assigned as a

standalone feature - assigning VoiceMail won't do

it. Thus there's no need for a dn_fwd_ok

attribute, the service assignment bit carries

that meaning.

Note that this structure is also used

by the Selective Call services which may need to

do forwarding (SCF, SCA).

</Description>

<FieldDef name = "vm_fwd_ok">

<Description>

Voice Mail assigned, i.e. this service

is allowed to forward to voice mail.

Updated by provisioning, based on the

global status of voice-mail subscription.

Might be set even if this service isn't

assigned.

</Description>

<ColumnDomain domain = "DMBOOL"/>

</FieldDef>

<FieldDef name = "edit_perm">

<Description>

Permissions the user has to change these

call-forward settings.

</Description>

<ColumnDomain domain = "DM_TAS_CF_EDITING"/>

<Default Value = "DM_CF_EDIT_FULL"/>

</FieldDef>

<FieldDef name = "fwd_to_where">

<Description>

IF this service decides to forward a call,

send it to the ID specified. So this

field selects between the various

(mutually exclusive) options for

routing this call.

</Description>

<ColumnDomain domain = "DM_TAS_CF_MODE"/>

</FieldDef>

<FieldDef name = " reveal_uri_options ">

<Description>

Identifies the URI options that are specified for the terminating user with reference to the

infomration conveyed or toward the forwarding user and the originating user

</Description>

<ColumnDomain domain = " REVEAL_URI_OPTIONS"/>

</FieldDef>

<FieldDef name = "forward_to">

<Description>

ID to forward calls to; may be a partial

dial string, might be a handle, could

include carrier access codes, so it's not

necessarily a PUID, but it can create one.

</Description>

<ColumnDomain domain = "DMTAS_FORWARD_TOVARBYTE"/>

</FieldDef>

</Struct>

typedef struct {

DMBOOL Unused11b: BFBOOL;

DMBOOL vm_fwd_ok : BFBOOL; /* redundant, derivable from
voicemail_#_provisioned */

DM_TAS_CF_EDITING edit_perm : BF_TAS_CF_EDITING;

DMBOOL Unused10b: BFBOOL;

DM_TAS_CF_MODE fwd_to_where : BF_TAS_CF_MODE;

DMBOOL Unused9b: BFBOOL;

DM_REVEAL_URI_OPTIONS reveal_uri_options; BF_REVEAL_URI_OPTIONS

DMBOOL Unused7b: BFBOOL;

DMBOOL Unused6b: BFBOOL;

DMBOOL Unused5b: BFBOOL;

DMBOOL Unused4b: BFBOOL;

DMBOOL Unused3b: BFBOOL;

DMBOOL Unused2b: BFBOOL;

DMBOOL Unused1b: BFBOOL;

DMTAS_FORWARD_TOVARBYTE forward_to;

} DM_CF_ALL_PARM;

8.2.22
DM_REVEAL_URI_OPTIONS

<Enum name = " REVEAL_URI_OPTIONS " size = "2">

<Description>

Enumeration of permissions for user-originated

changes of Call Forwarding data.

</Description>

<EnumValue name = " DM_GRUU_FALSE">

<Description>

URI should not be revealed.

</Description>

</EnumValue>

<EnumValue name = "DM_NOT_REVEAL_GRUU">

<Description>

If the "gr" parameter is present and the served user

has the subscription option "Served user allows the

presentation of his/her URI to diverted to user, then Not

reveal processing must occur

attributes they don't use.)

</Description>

</EnumValue>

<EnumValue name = "DM_GRUU_TRUE">

<Description>

GRUU should be conveyed in full

</Description>

</EnumValue>

</Enum>

typedef enum {

DM_GRUU_FALSE,

DM_GRUU_ NOT_REVEAL_GRUU,

DM_GRUU_ TRUE

} REVEAL_URI_OPTIONS_
#define BF_ REVEAL_URI_OPTIONS_
2

8.2.23
DMTAS_FORWARD_TO_PRESENTATION_OPTIONS

typedef struct { {

DMBOOL
notify-caller: BFBOOL;

REVEAL_URI_OPTIONS reveal-identity-to-caller: BF_ REVEAL_URI_OPTIONS,

REVEAL_URI_OPTIONS reveal-served-user-identity-to-caller: BF_ REVEAL_URI_OPTIONS;

DMBOOL
notify-served-user: BFBOOL;

DMBOOL
notify-served-user-on-outbound-call: BFBOOL;

REVEAL_URI_OPTIONS reveal-identity-to-target: BF_ REVEAL_URI_OPTIONS;

} DMTAS_FORWARD_TO_PRESENTATION_OPTIONS;

8.2.24
DM_CF_BUSY_PARM

<Struct name = "DM_CF_BUSY_PARM" cross-platform = "no">

<Description>

Service parameters for Call Forward Busy (CFBL).

Voice Mail number to forward to is globally stored.

(Same elements as DM_CF_UNREG_PARM...)

</Description>

<FieldDef name = "forward_to">

<Description>

ID to forward calls to; may be a partial

dial string, might be a handle, could

include carrier access codes, so it's not

necessarily a PUID, but it can create one.

</Description>

<ColumnDomain domain = "DMTAS_VARBYTE"/>

</FieldDef>

<FieldDef name = "vm_fwd_ok">

<Description>

Voice Mail assigned, i.e. this service

is allowed to forward to voice mail.

Updated by provisioning, based on the

global status of voice-mail subscription.

</Description>

<ColumnDomain domain = "DMBOOL"/>

</FieldDef>

<FieldDef name = "fwd_to_where">

<Description>

IF this service decides to forward a call,

send it to the ID specified. So this

field selects between the various

(mutually exclusive) options for

routing this call.

</Description>

<ColumnDomain domain = "DM_TAS_CF_MODE"/>

</FieldDef>

<FieldDef name = "edit_perm">

<Description>

Permissions the user has to change these

call-forward settings.

</Description>

<ColumnDomain domain = "DM_TAS_CF_EDITING"/>

<Default Value = "DM_CF_EDIT_FULL"/>

</FieldDef>

<FieldDef name = " reveal_uri_options ">

<Description>

Identifies the URI options that are specified for the terminating user with reference to the

infomration conveyed or toward the forwarding user and the originating user

</Description>

<ColumnDomain domain = " REVEAL_URI_OPTIONS"/>

</FieldDef>

<FieldDef name = "forward_to">

<Description>

ID to forward calls to; may be a partial

dial string, might be a handle, could

include carrier access codes, so it's not

necessarily a PUID, but it can create one.

</Description>

<ColumnDomain domain = "DMTAS_FORWARD_TO"/>

</FieldDef>

</Struct>

typedef struct {

DMTAS_VARBYTE forward_to;

DMBOOL vm_fwd_ok : BFBOOL;

DMBOOL Unused11b: BFBOOL;

DMBOOL Unused10b: BFBOOL;
DM_TAS_CF_MODE fwd_to_where : BF_TAS_CF_MODE;

DMBOOL Unused9b: BFBOOL;

DMBOOL Unused8b: BFBOOL;
DM_TAS_CF_EDITING edit_perm : BF_TAS_CF_EDITING;

DMBOOL Unused7b: BFBOOL;

DMBOOL Unused6b: BFBOOL;

DMBOOL Unused5b: BFBOOL;

DMBOOL Unused4b: BFBOOL;

DMBOOL Unused3b: BFBOOL;

DMBOOL Unused2b: BFBOOL;

DMBOOL Unused1b: BFBOOL;

DMUSHORT Unused1;

DMTAS_FORWARD_TO forward_to;} DM_CF_BUSY_PARM;

8.2.25
DM_CF_NO_RESPONSE_PARM

<Struct name = "DM_CF_NO_RESPONSE_PARM" cross-platform = "no">

<Description>

Service parameters for Call Forward No Response/Answer

(CFDA/CFNA). Because this feature may be assigned

either for forward-to-number service or forward-

not-answered-to-voice-mail, extra bits are required

inside this parameter to indicate which services

are actually allowed once this feature is assigned

(i.e. call processing must screen activation

attempts based on this internal data).

This service provides not only no-answer timing once

alerting has started, but other non-busy error responses

as well (all SIP non-success responses except 486, 480

and 600, which are captured by Call Forwarding Busy).

</Description>

<FieldDef name = "forward_to">

<Description>

ID to forward calls to; may be a partial

dial string, might be a handle, and could

include carrier access codes; so it's not

necessarily a PUID.

</Description>

<ColumnDomain domain = "DMTAS_VARBYTE"/>

</FieldDef>

<FieldDef name="noresp_timer">

<Description>

Time to wait before declaring the "No Response"

condition.

Units are (seconds, rather than ring cycles?)

</Description>

<ColumnDomain domain="DMUBYTE"/>

</FieldDef>

<FieldDef name = "vm_fwd_ok">

<Description>

Voice Mail assigned, i.e. this service

is allowed to forward to voice mail.

</Description>

<ColumnDomain domain = "DMBOOL"/>

</FieldDef>

<FieldDef name = "fwd_to_where">

<Description>

IF this service decides to forward a call,

send it to the ID specified. So this

field selects between the various

(mutually exclusive) options for

routing this call.

</Description>

<ColumnDomain domain = "DM_TAS_CF_MODE"/>

</FieldDef>

<FieldDef name = "edit_perm">

<Description>

Permissions the user has to change these

call-forward settings.

Note that Partial also blocks user

changes to the timer value (not just

destination).

</Description>

<ColumnDomain domain = "DM_TAS_CF_EDITING"/>

<Default Value = "DM_CF_EDIT_FULL"/>

</FieldDef>

<FieldDef name = " reveal_uri_options ">

<Description>

Identifies the URI options that are specified for the terminating user with reference to the

infomration conveyed or toward the forwarding user and the originating user

</Description>

<ColumnDomain domain = " REVEAL_URI_OPTIONS"/>

</FieldDef>

<FieldDef name = "forward_to">

<Description>

ID to forward calls to; may be a partial

dial string, might be a handle, and could

include carrier access codes; so it's not

necessarily a PUID.

</Description>

<ColumnDomain domain = "DMTAS_FORWARD_TO"/>

</FieldDef>

</Struct>

typedef struct {

DMTAS_VARBYTE forward_to;

DMUBYTE noresp_timer;

DMBOOL vm_fwd_ok : BFBOOL;

DMBOOL Unused11b: BFBOOL;

DMBOOL Unused10b: BFBOOL;
DM_TAS_CF_MODE fwd_to_where : BF_TAS_CF_MODE;

DMBOOL Unused9b: BFBOOL;

DMBOOL Unused8b: BFBOOL;
DM_TAS_CF_EDITING edit_perm : BF_TAS_CF_EDITING;

DMBOOL Unused7b: BFBOOL;

DMBOOL Unused6b: BFBOOL;

DMBOOL Unused5b: BFBOOL;

DMBOOL Unused4b: BFBOOL;

DMBOOL Unused3b: BFBOOL;

DMBOOL Unused2b: BFBOOL;

DMBOOL Unused1b: BFBOOL;

DMUBYTE Unused1;

DMTAS_FORWARD_TO forward_to;} DM_CF_NO_RESPONSE_PARM;

8.2.26
DM_MULTIWAY_PARM

<Struct name = "DM_MULTIWAY_PARM">

<Description>

Service parameters for Multiway Calling.

This service does not provide advanced conferencing

abilities, such as meet-me, recordings and the like.

</Description>

<FieldDef name = "n_way">

<Description>

The number of members allowed to be joined as a

single call. The subscriber (near-end) leg is

included in this number.

</Description>

<ColumnDomain domain = "DMUBYTE"/>

<Default Value="3"/>

</FieldDef>

<FieldDef name = "do_transfer">

<Description>

Applies primarily to 3-way calling --

specifies the treatment of other legs

when the controller of the call hangs up.

If DBYES, then the remaining parties stay

connected ("transfer from 3-way call");

if DBNO, all connections are torn down.

</Description>

<ColumnDomain domain = "DMBOOL"/>

</FieldDef>

</Struct>

typedef struct {

DMUBYTE n_way;

DMBOOL do_transfer : BFBOOL;

DMULONG Unused1f: 7;

DMUSHORT Unused1;} DM_MULTIWAY_PARM;

