3GPP TSG CT WG4 Meeting #38
C4-080061
Puerto Vallarta, MEXICO, 28th Jan – 1st Feb 2008
Source:
Alcatel-Lucent
Title:
Study of IMS Application Server Service Data Descriptions for AS interoperability
Agenda item:
6.2.3
Document for:
INFORMATION

Binary data: definitions, structure, and specific data
This contribution provides a framework for binary application data descriptions to support the feature list indicated in section 5
2
References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

· References are either specific (identified by date of publication, edition number, version number, etc.) or non‑specific.

· For a specific reference, subsequent revisions do not apply.

· For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same Release as the present document.

[1]
3GPP TR 21.905: "Vocabulary for 3GPP Specifications".

[2]
ETSI TS 183 023 V1.3.1 (2007-04) "TISPAN PSTN/ISDN simulation services; Extensible Markup Language (XML) Configuration Access Protocol (XCAP) over the Ut interface for Manipulating NGN PSTN/ISDN Simulation Services"
[3]
3GPP TS 22.173, “IMS Multimedia Telephony Communication Service and Supplementary Services, Stage 1;
[4]
ETSI-TS-183-004-v1-2-1 "TISPAN PSTN/ISDN simulation services:Communication Diversion (CDIV) Protocol specification "

[5]
ETSI-TS-183-005-v1-3-1 "TISPAN PSTN/ISDN simulation services:Conference (CONF) Protocol specification "

[6]
ETSI-TS-183-006-v1-2-1 "TISPAN PSTN/ISDN simulation services:Message Waiting Indication (MWI) Protocol specification "

[7]
ETSI-TS-183-007-v1-2-1 "TISPAN PSTN/ISDN simulation services: Originating Identification Presentation (OIP) and Originating Identification Restriction (OIR);Protocol specification "
[8]
ETSI-TS-183-008-v1-2-1 "TISPAN PSTN/ISDN simulation services: Terminating Identification Presentation (TIP) and Terminating Identification Restriction (TIR); Protocol specification"

[9]
ETSI-TS-183-010-v1-2-2 "TISPAN PSTN/ISDN simulation services: Communication HOLD (HOLD) Protocol specification"

[10]
ETSI-TS-183-011-v1-2-1 "TISPAN PSTN/ISDN simulation services: Anonymous Communication Rejection (ACR) and Communication Barring (CB); Protocol specification"

[11]
ETSI TS 183 029: "Telecommunications and Internet converged Services and Protocols for Advanced Networking (TISPAN); PSTN/ISDN simulation services: Explicit Communication Transfer (ECT); Protocol specification"
[12]
3GPP TS 24.173 V7.1.0 (2007-06), “IMS Multimedia Telephony Communication Service and Supplementary Services; Stage 3, (Release 7);

[za]
IETF RFC 3966, The tel URI for Telephone Numbers, December, 2004
3
Definitions, symbols and abbreviations

3.1
Definitions

For the purposes of the present document, the terms and definitions given in TR 21.905 [1] and the following apply. A term defined in the present document takes precedence over the definition of the same term, if any, in TR 21.905 [1].

Within GSM MAP, operations and parameters were defined. Parameters rely heavily on sub parameters.

In this service data description mapping, the operations correlate to diameter Sh Read/Write/Subscribe/Notify, and therefore will not be specified. We define ‘Releases’ consistent with the base parameter structure. Releases begin with a release identifier and release length. The length points to the end of data definition for the release. This is either the end of the defined database or the beginning of a subsequent release.

	Term
	Definition

	Database
	An independent table that is written to the HSS. This is a collection of data accessed through a common mechanism. It is stored and administered as one entity.

Each database has a unique ServiceIndication. Each may be included within a Diameter Sh request, but recent Sh commands allow multiple queries within the same Request. Diameter Sh error scenarios do allow successful read operations with failures simply omitted, so care must be taken when separating data into distinct databases.

	Release
	The versioning of a database that defines new content definition. Each Release has a release ID and is accompanied by a length parameter so that multiple releases can be parsed even by an AS not familiar with the contents of a specific release.
Data contained within a Release can be categorized into various structured types, bitmap, string, and varbyte are some examples.

3.2
Symbols

For the purposes of the present document, the following symbols apply:

Editor’s note: To be completed or section removed.

5
Mechanisms for transfer of defined service data between Application server and HSS

Editor’s note: This section will identify mechanisms for the transfer of service data descriptions to Application Servers over Sh interface.

5.1 Defined features

The data to support Telephony application server features are identified in the following list taken from 3GPP TS 22.173 [3]. The feature list may be expanded in the future, but initially will contain the following capabilities:

1. Call transfer
2. CF Busy
3. CF No Reply / No Response

4. CF Not Logged In (CFNL)

5. CF All/CFU
6. CF Not Reachable (CFNRc)

7. Communication Deflection
8. Multiway calling/Conf
9. Calling ID - Subsets of this feature include OIP, OIR, TIP, and TIR

10. Call Barring
11. Call blocking
Conveying this data from an application server to the HSS requires definition of the details for each of the features and is implemented within the application server.
5.za
Compact Data Layout Structure
5.za.1
Introduction
This section introduces a compact layout that describes data conveyed on the Sh interface, between the HSS and the telephony application server.
5.za.2
Subscriber Structure
The 3GPP data model for IMS comes in 2 variants. This exercise selected the simpler of the 2 formats, as today’s (2007) TAS exhibits only the 1-N relationship between PrIDs and PUIDs. This model is shown as (ref 3GPP 23.228 section 4.3.3.4). This is repeated in Figure ZA1

[image: image1]
Figure ZA1 3GPP Data Model Structure
The TAS has eventual requirements to keep data scoped to each of the boxes identified in the above figure. This assumes that each PUID may have independent features. The TAS structure to model is shown in Figure ZA2. This can be implemented with databases identified in boxes in Figure ZA2.
 Specifically, only the shaded portion of this figure applies for the feature set defined herein. This is because the PUIDs share the same services. Therefore, only one set of “Services’, ‘Selection List’, and ‘Simul_Ring’ databases are required. Extensions such as Selection features (screening, etc) and Simultaneous Ringing (Flexible Alerting) are not yet included in this feature set, these database definitions can be deferred. Additionally, since the Sh interface provides a query for PUIDs within the subscription, the information in the PUID database can be obtained, and not maintained on the TAS. Further, the Party database, applying to all PUIDs within the subscription, is not necessary for the subscriber model and feature set defined. It is not defined, but shown for extensibility reasons. Therefore only the ‘Services’ databases will be defined. Others are anticipated as separate ServiceIndications written to the HSS in the future.

[image: image2]
Figure ZA2 TAS Data Structure
5.za.3
Sizing
The amount of stored data is related to cost. This is especially true when the number of subscribers on a system is driven by memory constraints. Therefore, the defined format of the data in each of these databases is carefully considered and minimized. The information content in an XML description compared to the same content in a ‘compact’ or binary format is between 1 and 2 orders of magnitude. One example had a growth factor of 33.

To avoid HSS, data transmission, and potentially App Server caching costs increasing, we have defined the Services database with a compact structure. Further, we identified databases that are anticipated in a subsequent release. These are the Party, Simul_ring and Selection_list databases. In future releases these are expected in a compact structure consistent with the extensibility rules defined these Services... The compact structure consists of concepts taken from ANSI-41 definitions, also known as Type-length-value formats. This includes a defined ‘parameter’ and ‘length’. Additionally it uses the examples of fixed structures similar to the CallingFeaturesIndicator, wherein defined bits represent known or reserved features. Finally, to accommodate variations in PUID lengths and digit lengths, it accommodates a variable length section.

5.za.4
Layout

If no variable length attributes were defined, then each release would have fixed length. Parsing MUST proceed by examining the release tag and corresponding length, then moving forward to parsing the next release’s tag and corresponding length. This length will not remain consistent from subscriber to subscriber, as each may have different variable length parameters.

5.za.4.1
Variable Size Data
Most scalar fields will have a fairly narrow range of use, and it is possible to establish the units and range with confidence. (For example, a Ring back Timer doesn't require millisecond resolution because it's a delayed event for a human to process; choosing seconds as the units, 256 might not be enough, while 65,000 should be more than enough -- so a short can be used with confidence.)

Other data must remain flexibly defined. An example is URIs, digit-strings (only sort of the same) or PUIDs, which have various size limits in different places. Considering scheme to allow anything unspecified to be contained in a size limit of 256 is wasteful. Therefore we allow variable length octet fields within the CSDB definition. These may be used to contain strings, URIs, etc.

The requirements implementation contents for 2 specific types of variable length structures, PUIDs and forward to numbers are further constrained.

Forward to numbers are those that may be entered by the end user or may be entered by the service provider at initial or subsequent provisioning. This exercise, it is considered very complex to interpret the parameters that may be contained in SIP-URIs. Therefore, all FWD-TO numbers will be contained in tel-URL format. See IETF RFC 3966 [za]. This constrains the digits stored in the FTNs to internationally dialable strings. The TAS must store digits in this manner, as locally routable digit strings may not be sufficient.

PUIDs do not appear in this data, so their definition is, for the time, irrelevant. Later, if PUID references must be made in data, (to identify the Primary of a subscription, etc) it is suggested that parameters may be ignored, and the PUID will be stored in a TEL-URI or SIP-URI form, sporting no parameters. Examples would be SIP: User@Domain or tel: +1987654321098765.

5.za.4.2
Variable Length Representation
Some fields will need to be variable length, so that they can grow as the needs and other infrastructure support grows. Other fields should be fixed in length, as they do not represent things which are likely to grow. Most variable fields will relate to addresses - things which might be PUIDs, or dial strings with some combination of service access codes preceding them.

Variable data representation will not impose anything more than extremely gross size restrictions; however, the semantic definitions should include much tighter limits, which can be eased at later times. This allows implementations which currently use fixed-length strings to continue to do so for some time. (They're likely to be doing so for storage and computational efficiency reasons, just as the binary representation have been chosen for storage and bandwidth reduction reasons.

typedef struct {

unsigned short
vdata_offset;
/* byte offset from release start */

unsigned short
vdata_len;

* Number of bytes */

} DM_TAS_VARBYTE;

The vdata_offset is the offset (in bytes) from the beginning of this block of data, i.e. the start of a DM_TAS_DB_HEADER_WITH_LEN structure. While this reference point is somewhat arbitrary, this approach allows a vdata_offset of 0 to indicate a non-provided sequence. Using an explicit length also allows this representation to be used for arbitrary data and not just printable characters. Providing an explicit length also makes validity checking somewhat easier, as improper pointers to variable data will be more obvious. Like the length in DM_TAS_DB_HEADER_WITH_LEN, ushort seems to be the right size for these fields -- 255 could be too limiting.

This does mean that a specific Release (semantic data block) does not have a specific size, although it will at least have a minimum size (the size if no strings are defined at all).

The offset+length approach allows two validations for each DM_TAS_VARBYTE:

 i.
offset >= fixed_size (unless offset == 0), and

 ii.
offset+length <= total_size_of_release_instance.

A more detailed integrity check would ensure that no string overlaps another.
5.za.4.2.1
Variable Length Data
We have allowed variable length attributes. Therefore, within the definition of a release, each of the variable length attributes will also be identified with an offset and length. The offset will represent the starting location of the stored attribute, relative to the starting point of the release. The length will determine the end of the string

The following should be allowed within the pointer references, and therefore MUST be accommodated by all application servers in the first release:

1.

Offsets to data must be in increasing order. If several variable length attributes are consecutively defined, the first may not use an offset with a larger value than the second. The exception is for offset values of length 0 (data is undefined). This rule allows the parser to change the content and length of an offset, and be assured that no other variable length string has also referenced this content. Without this statement, an Application server would need to ensure that no other variable length data ‘reused’ the content. . However, the complexity required to handle validation of holes and overlaps, and the need to regenerate the compact structure in case a variable length string increases make this rule reasonable. This coupled with the perceived infrequency of use results in this simplification

As shown in, Figure za1 the Var1 and Var4 contents are currently the same. The offset and length for Var4 and Var1 are distinct. If the offset for Var 4 was 40 (the same as Var1’s offset – referencing the same data), it would work to conserve space in our variable length strings. However, it would have created a complexity on behalf of the AS. When the data for Var1 becomes different than Var4, the AS must know to generate a new offset, for Var1, and retain the data for Var4, realigning the remainder of the data for all other variable length data. This approach is not allowed, and instead we require varbytes to reference distinct data in increasing offsets as shown in Figure za1
Instead, we require Var1 and, VAR4 to have distinct, increasing offsets to distinct data. When the size of a variable length byte field increases, the entire variable length section must be realigned. The differences between Figure za1 and Figure za2 highlight this principle.

[image: image3]
Figure za1 Variable length data offsets

[image: image4]
Figure za2 Variable length data offsets after Var1 expansion.
Selection lists can be implemented in 2 ways. By defining a separate database for features that contain selection lists, we are able to isolate these relatively large structures, and keep core features together in a single compact database. Subscribers with this additional database would need to define a mechanism to know it exists, and efficiently retrieve the contents. Alternately, the selection list might be defined as a new release within the Services database. If the list grows, multiple structures containing the same release ID could be included. These would be identically defined, but of course contain additional members of the respective lists. Both mechanisms only impart the lists structures on the subscribers with these services.
5.za.4.2.2
Variable Length Ordering Constraints
Following is a list of assumptions on sharing or ordering constraints concerning variable length strings.

A.
If the same data value appears more than once in a given release, it MUST NOT be implemented as two pointers to the same value. The exception to this rule is o length (empty) strings.

•
It is perceived that this is unlikely for our problem space, and it creates complex implementations. This is prohibited. .

B.
The order of string values MUST match the order of VARBYTEs (byte pointers/identifiers) in the release

•
While requiring this doesn't make the data manipulation much easier, it is not clear that it makes it any harder either. It does, however, make the "no overlapping strings" semantic check easier, as that is then no more than "next string value starts after previous string value ends".

C.
Holes SHOULD NOT occur between string values.

•
If they do, then the TAS is not responsible for maintaining the information in these holes and alternate application servers MAY remove them in subsequent write actions.

Outlawing holes makes forming an update somewhat harder, as a change which shrinks a string value must now perform a compaction, adjusting every subsequent string. Of course, writing back an expanded value will require a similar adjustment, whatever the decision on holes.

D.
Space after the last string value is not significant, and MAY NOT be retained.

It follows that the extensibility is unable to add DM_TAS_VARBYTEs to a previously-defined release; because a TAS cannot tell the difference between "nothing of interest after the last string" and "although the last string doesn't end at the end of the release, those other bytes represent a string value for newer versions of this release".

Given that it takes four bytes for a DM_TAS_VARBYTE, if it is unlikely to have four spare bytes in any approved release definition - if we want to add strings, we can add them in new releases.

5.za.4.3
Data Layout
There are several aspects of representation:

 -
field size

 -
field location

 -
field internal structure

(byte order, character representation, string representation)

Some fairly standard terms and rules, derived from common practice for 32-bit processors:

Byte
== octet

Long or Int == 4 bytes (signed and unsigned)

short
== 2 bytes (signed, unsigned)

Data alignment is such that the size of the struct alignments pad all structs out to 4-byte multiples. The downside is some wasted space, although future standard versions could take those bits.

Bit fields take up only the number of bits they say

5.za.4.3.1
Order
Network byte ordering means Most Significant Byte first. This is the CSDB defined and agreed upon model.

Bit field orders: these can be finagled with compiler assistance; we used to have ifdef-ed headers so that the bit fields would be the same across machines, e.g.

#if (MPOWERPC || MMC68)

DMBOOL
flag1: 1;

DMBOOL
flag2: 1;

int
:6;

#endif

#if (MIAPX)

int
:6;

DMBOOL
flag2: 1;

DMBOOL
flag1: 1;

#endif

So when messages are exchanged between the machines, the bit locations matched. (Byte swabbing sometimes had to happen, but control logic for bit swabbing was thereby avoided.) When pictured, representations will use the top bit as the highest value, i.e. left-to-right are bits representing the values 1<<k,

1<<(k-1), ... 2, 1.

5.za.4.3.2
Character Representation
UTF-8 characters MUST be representable within string or byte definitions. This implementation will be limited to the ASCII character set.

5.za.4.3.3
Byte Representation
Byte structures can be variable in length. Our CSDB implementation will use the Tag-length value approach, wherein the length defines the end of a variable length byte definition.

Varbytes interpreted as strings should not contain the null character. This is so there is no confusion with null terminated string implementations.

String representations should be displayable. As such the provisioning system or writing entity (TAS) is not expected to include null or ‘Ctl-C’ ASCII characters. This is so to accommodate strings such as DISPLAY NAME.
Selection_ List4x4*

Services*

ESRNs*

Party

Simul_ring*

Selection_ List4x4*

Services*

Simul_ring*

PUID

PUID*

PUID

52

40

In this example: Var 1 = 12345678

Var 2 = null

Var 3 = 90AB

Var 4 = 12345678

Variable length

Fixed size

Var 1

Offset=40				Len=8

Var 2

Offset=48				Len=0

Var 3

Offset=48				Len=4

Var 4

Offset=52				Len=8

More data

1�
2�
3�
4�
�
5�
6�
7�
8�
�
9�
0�
A�
B�
�
1�
2�
3�
4�
�
5�
6�
7�
8�
�

52

40

In this example: Var 1 = 012345678

Var 2 = null

Var 3 = 90AB

Var 4 = 12345678

Variable length

Fixed size

Var 1

Offset=40				Len=9

Var 2

Offset=49				Len=0

Var 3

Offset=49				Len=4

Var 4

Offset=53				Len=8

More data

0�
1�
2�
3�
�
4�
5�
6�
7�
�
8�
9�
0�
A�
�
B�
1�
2�
3�
�
4�
5�
6�
7�
�
8�
�
�
�
�

[image: image5.wmf]IMS

Subscription

Private

User Identity

Public

User Identity

Public

User Identity

Public

User Identity

Service

Profile

Service

Profile

