3GPP TSG CT WG4 Meeting #38
C4-080059
Puerto Vallarta, MEXICO, 28th Jan – 1st Feb 2008
Source:
Alcatel-Lucent
Title:
Study of IMS Application Server Service Data Descriptions for AS interoperability
Agenda item:
6.2.3
Document for:
INFORMATION

Discussion on storage efficiency and compression

This contribution focuses on the schema that store AS service data. It highlights efficient representations for data, and the cost of inefficient data definition strategies.
With any inefficient storage, compression becomes an obvious topic. This input analyzes strategic points for compression, and illustrates the system benefits for compression at these points
5
Mechanisms for transfer of defined service data between Application server and HSS

Editor’s note: This section will identify mechanisms for the transfer of service data descriptions to Application Servers over Sh interface.

5.1 Defined features

The data to support Telephony application server features are identified in the following list taken from 3GPP TS 22.173 [3]. The feature list may be expanded in the future, but initially will contain the following capabilities:

1. Call transfer
2. CF Busy
3. CF No Reply / No Response

4. CF Not Logged In (CFNL)

5. CF All/CFU
6. CF Not Reachable (CFNRc)

7. Communication Deflection
8. Multiway calling/Conf
9. Calling ID - Subsets of this feature include OIP, OIR, TIP, and TIR

10. Call Barring
11. Call blocking
Conveying this data from an application server to the HSS requires definition of the details for each of the features and is implemented within the application server.
5.x Information Content vs representation
To facilitate centralized storage, the information required to create basic telephony services must be conveyed to the HSS. To facilitate session processing, it must be conveyed to the requesting application server. This information is stored co resident with session processing in the active application server. This co-resident version is considered a cache. The master copy is viewed as the version stored in the HSS.
One application server goal is to allow higher subscriber numbers/capacity per application server. This goal requires architecture of this data to be extremely compact, regardless of the size of data transmitted from/to the centralized storage facility in the HSS, this form can be retained after registration. Increased numbers of subscribers that are concurrently cached at an application server drives capacity.
The HSS is impacted with increased size of this transferred data. Available memory in an HSS is allocated to each subscriber. Higher memory use per subscriber inversely affects the HSS capacity. For this reason, the HSS will consider compression of the stored data if that is practical.
With transparent data, the HSS is not aware of the content of the data. If the HSS were aware of content, then it could use this knowledge to reduce the size of the stored image. Since it is not, only generic compression techniques are available for this use.
If extensibility mechanisms such as XML are used to store data in an HSS, the expected increase in transmitted then stored information between the HSS and the application server could be between 30 and 100. A typical example showing the inefficiency computation for XML when it is used to represent call forwarding busy follows. The XML shown is a representation of data related to call forwarding Busy.

[image: image1]

[image: image2]
Derating the application server and HSS capacities to allow man-readable extendibility is a business case to be considered for the AS, and HSS vendors. Ultimately increased hardware and architecture costs will be passed to the service providers. Additionally, costs related to this architecture impact the AS-HSS IP network as well as internal IP networks within these elements. This is because the increase in size translates to an increase in LAN/WAN bandwidth among these elements. A more compact format should be specified.
5.y Evaluation of compression options
To overcome the cost of the XML size expansion, we consider options for compression algorithms that would operate on the XML bodies, and also consider where they could be applied. Figure x2 indicates three alternative locations for compression execution.

One option for compression is within the HSS complex, closest to the database. This would allow varying compression algorithms to be used in the network, and would leave the Transparent Data compression task and algorithm to be specified at each database. This is shown as option 3.

Another option would be to identify a compression algorithm that would operate on Data received at the HSS. The HSS could have knowledge of the data being received (XML, encoded binary, .wav, text) and could choose a compression algorithm based upon the type of data, or instance of data being transmitted. This could even be determined and pre-configured per ServiceIndication. This begins to share specific contents of the HSS transparent Data in order to drive network efficiencies. As the ultimate progression of this HSS compression, the HSS may require specific knowledge of the XML contents so that it may efficiently store the received data. Potentially, this could require development on the HSS, or additions to HSS capabilities to allow a service to load and store a schema so that compression was available.

[image: image3]
Figure x2 Compression Algorithms

Finally we consider a mechanism wherein the Application servers agree upon a compression algorithm. This would allow any flexibility for XML extension, and may allow human readable visibility to the transmitted information, albeit prior to transmission. It appears as a data expansion to XML, followed by an almost immediate compression.

Notice that for increased network efficiency, compression should be performed closer to the left side of the figure. Compression schemes applied closer to the left also require more standardization or coordination to ensure the compression algorithm is similarly applied across all ASs.

A binary encoded format, storing information using defined structures, is a form of compression that is extremely efficient. XML might be applicable for web style transactions wherein the data formats may change on the fly. However, with TAS data, this change can be managed into controlled releases.

In reflecting on efficiencies that may be someday desired to combat the increased size and bandwidth required for XML transmission, we notice that any efficient compression also negates the benefit of XML encoding, as the most efficient compressor may un-do the compression. Also, the compression algorithm has not been specified. While specification and standardization of this mechanism is for further study, an expectation is the control and standardization of the compression algorithm would introduce additional complexity. One observation: simplification of data distribution is NOT facilitated by introducing verbose, Man-readable, XML style formats for this well-understood data.
 <CallForwardingBusy Assigned="1" Activated="0" PerPuid="0">

 <ForwardToType>FORWARD_TO_DN</ForwardToType>

 <ForwardToDNAllowed>0</ForwardToDNAllowed>

 <ForwardToDN>+19742400002</ForwardToDN>

 <EditPermissions>EDIT_FULL</EditPermissions>

</CallForwardingBusy>

Notice that the information contained within the

246 characters (not counting 10 spaces) could be contained within

Digits					(12)

+19742400002	

Binary flags				(3)

Call forwardingBusy

Assigned="1"

Activated="0"

PerPuid="0"

Enumerations 				(2)

ForwardToType

FORWARD_TO_DN

EditPermissions>

EDIT_FULL

Total Bits

(12*4)+3+(2*4)= 59 bits 	(BINARY)

vs.

246 x 8 = 1968 		(XML)

XML Expansion Ratio = 1968 /59 ~=33.

� INCLUDEPICTURE "http://image.winzip.com/images/wz_std_ico.gif" * MERGEFORMATINET ���

3

Data

base

� INCLUDEPICTURE "http://image.winzip.com/images/wz_std_ico.gif" * MERGEFORMATINET ���

1

App

Server

Compression Options

� INCLUDEPICTURE "http://image.winzip.com/images/wz_std_ico.gif" * MERGEFORMATINET ���

�� INCLUDEPICTURE "http://image.winzip.com/images/wz_std_ico.gif" * MERGEFORMATINET ���

� INCLUDEPICTURE "http://image.winzip.com/images/wz_std_ico.gif" * MERGEFORMATINET ���

3

2

1

Data

base

HSS

App

Server

[image: image4.png]

[image: image5.png]

[image: image6.png]

[image: image7.emf]

App Server HSS

Data base

1 2

3

[image: image8.png]

[image: image9.png]

