

	
3GPP TSG-CT WG4 Meeting #122	C4-241298
Changsha, P.R.China; 15th – 19th April 2024
	CR-Form-v12.2

	CHANGE REQUEST

	

	
	29.501
	CR
	0155
	rev
	 -
	Current version:
	18.4.0
	

	

	For HELP on using this form: comprehensive instructions can be found at
http://www.3gpp.org/Change-Requests.

	

	Proposed change affects:
	UICC apps
	
	ME
	
	Radio Access Network
	
	Core Network
	X

	

	Title:	
	HTTP Multipart message support in PATCH Request

	
	

	Source to WG:
	Microsoft EUROPE SARL

	Source to TSG:
	CT4

	
	

	Work item code:
	SBIProtoc18
	
	Date:
	2024-4-5

	
	
	
	
	

	Category:
	 D
	
	Release:
	Rel-18

	
	Use one of the following categories:
F (correction)
A (mirror corresponding to a change in an earlier 													release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)
Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	Use one of the following releases:
Rel-8	(Release 8)
Rel-9	(Release 9)
Rel-10	(Release 10)
Rel-11	(Release 11)
…
Rel-16	(Release 16)
Rel-17	(Release 17)
Rel-18	(Release 18)
Rel-19	(Release 19)

	
	

	Reason for change:
	At CT#121, C4-240355 introduced support for multipart messages in HTTP PATCH to allow support for partial update of records in TS 29.598. During the discussion it was pointed out that the support for multipart messages in HTTP PATCH was unclear current specifications and TS 29.501 should be updated.

Multipart requests combine one or more sets of data into a single body, (for example, a JSON object along with binary data of unknown content type).

Multipart HTTP messages are identified by a multipart Content-Type field, which indicates that the message body contains multiple body parts. Each body part consists of a header area, a blank line, and a body area. A body part is structured very much like a "regular" body preceded by the content-header fields. The JSON body part will always be inserted as the first body part of the message.

The applicability of multipart messages to the service-based architecture is detailed in TS 29.500 clause 5.4 and leaves it up to individual specifications to document the usage.

TS 29.501 provides guidelines on defining a service for the service-based architecture, and clause 4.6 specifies HTTP Methods and CRUD operations.Clause 4.6.1.1.3.2 explains how to use HTTP PATCH method to modify the current representation of a resource based on given modification instructions, However, it does not provide any details on how the HTTP PATCH method applies to resources with multiple datasets.

Furthermore, clause 5.3.8 of TS 29.501 only lists "application/json-patch+json" and "application/merge-patch+json" as possible patch document formats. But IETF RFC 5789 does not limit where a patch document can go. It could be in a single body or a body part.

	
	

	Summary of change:
	Clarified use of multipart messages in the bodies of HTTP PATCH Request

	
	

	Consequences if not approved:
	Incorrect belief that PATCH cannot be used with multipart messages, causing difficulty or inefficiency in modifying resources consisting of more than one dataset.

	
	

	Clauses affected:
	2, 4.6.1.1.3.2, 5.3.8.1, 5.3.8.x, Annex D

	
	

	
	Y
	N
	
	

	Other specs
	
	X
	 Other core specifications	
	TS/TR ... CR ...

	affected:
	
	X
	 Test specifications
	TS/TR ... CR ...

	(show related CRs)
	
	X
	 O&M Specifications
	TS/TR ... CR ...

	
	

	Other comments:
	This CR does not introduce any functional changes.

	
	

	This CR's revision history:
	

Page 1

* * * First Change * * * *
[bookmark: _Toc19702409][bookmark: _Toc27751565][bookmark: _Toc35971651][bookmark: _Toc35975900][bookmark: _Toc44849352][bookmark: _Toc51852993][bookmark: _Toc51859666][bookmark: _Toc155107086]2	References
The following documents contain provisions which, through reference in this text, constitute provisions of the present document.
-	References are either specific (identified by date of publication, edition number, version number, etc.) or nonspecific.
-	For a specific reference, subsequent revisions do not apply.
-	For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same Release as the present document.
[1]	3GPP TR 21.905: "Vocabulary for 3GPP Specifications".
[2]	3GPP TS 29.500: "5G System; Technical Realization of Service Based Architecture; Stage 3".
[3]	IETF RFC 8259: "The JavaScript Object Notation (JSON) Data Interchange Format".
[bookmark: _PERM_MCCTEMPBM_CRPT81200000___5][4]	OpenAPI: "OpenAPI Specification Version 3.0.0", https://spec.openapis.org/oas/v3.0.0.
[5]	3GPP TS 29.571: "5G System; Common Data Types for Service Based Interfaces Stage 3".
[6]	IETF RFC 7231: "Hypertext Transfer Protocol (HTTP/1.1): Semantics and Content".
[7]	IETF RFC 7396: "JSON Merge Patch".
[8]	IETF RFC 6902: "JavaScript Object Notation (JSON) Patch".
[9]	IETF RFC 3986: "Uniform Resource Identifier (URI): Generic Syntax".
[10]	IETF RFC 5789: "PATCH Method for HTTP".
[11]	IETF RFC 8288: "Web Linking".
[bookmark: _PERM_MCCTEMPBM_CRPT81200001___5][12]	IANA: "HTTP Status Code Registry at IANA", http://www.iana.org/assignments/http-status-codes.
[13]	IETF RFC 7540: "Hypertext Transfer Protocol Version 2 (HTTP/2)".
[14]	Fielding, Roy Thomas. Architectural Styles and the Design of Network-based Software Architectures. Doctoral dissertation, University of California, Irvine, 2000.
[15]	Erik Wilde, Cesare Pautasso, REST: From Research to Practice, Springer.
[bookmark: _PERM_MCCTEMPBM_CRPT81200002___5][16]	YAML 1.2: "YAML Ain't Markup Language", http://yaml.org.
[17]	Semantic Versioning Specification: https://semver.org.
[18]	3GPP TS 29.510: "5G System; Network Function Repository Services; Stage 3".
[19]	IETF RFC 9457: "Problem Details for HTTP APIs".
[20]	3GPP TS 29.502: "5G System; Session Management Services; Stage 3".
[21]	3GPP TS 29.509: "5G System; Authentication Server Services; Stage 3".
[22]	3GPP TS 33.501: "Security architecture and procedures for 5G system".
[23]	IETF RFC 6749: "The OAuth 2.0 Authorization Framework".
[24]	3GPP TS 29.573: "5G System; Public Land Mobile Network (PLMN) Interconnection;Stage 3".
[25]	3GPP TR 21.900: "Technical Specification Group working methods".
[26]	IETF RFC 5234: "Augmented BNF for Syntax Specifications: ABNF".
[27]	3GPP TS 23.003: "Numbering, addressing and identification".
[28]	3GPP TS 29.503: "5G System; Unified Data Management Services; Stage 3".
[aa]	IETF RFC 2046: "Multipurpose Internet Mail Extensions (MIME) Part Two: Media Types".

* * * Next Change * * * *
[bookmark: _Toc19702445][bookmark: _Toc27751601][bookmark: _Toc35971687][bookmark: _Toc35975936][bookmark: _Toc44849393][bookmark: _Toc51853034][bookmark: _Toc51859707][bookmark: _Toc155107121]4.6.1.1.3	Updating a Resource
[bookmark: _Toc19702446][bookmark: _Toc27751602][bookmark: _Toc35971688][bookmark: _Toc35975937][bookmark: _Toc44849394][bookmark: _Toc51853035][bookmark: _Toc51859708]4.6.1.1.3.1	Usage of HTTP PUT
Procedures that allow a service consumer NF (client) to update information stored at the server by means of a complete replacement shall be specified to use the HTTP PUT method to replace the current representation of a resource with a new representation.
Figure 4.6.1.1.3.1-1 illustrates updating a resource using HTTP PUT.

Figure 4.6.1.1.3.1-1: Updating a Resource using HTTP PUT
1.	The resource that is to be updated is identified by the request URI. The payload body of the PUT request shall contain the new representation of the resource. For forward compatibility, the NF service producer ignores unknown attributes in the received resource representation unless specified otherwise by the particular application.
2.	On success, "204 No Content" or "200 OK" shall be returned.
On failure, the appropriate HTTP status code indicating the error shall be returned and appropriate additional error information should be returned in the PUT response body (see clause 4.8).
If the resource that is to be updated does not exist at the NF service producer, the following applies:
1.	If the creation of that resource by PUT is supported, the resource is created according to the procedure in clause 4.6.1.1.1.3.
2.	If the creation of that resource by PUT is not supported, the "403 Forbidden" HTTP status code shall be returned and appropriate additional error information should be returned in the PUT response body (see clause 4.8).
[bookmark: _Toc19702447][bookmark: _Toc27751603][bookmark: _Toc35971689][bookmark: _Toc35975938][bookmark: _Toc44849395][bookmark: _Toc51853036][bookmark: _Toc51859709]4.6.1.1.3.2	Usage of HTTP PATCH
Procedures that allow a service consumer NF (client) to update information stored at the server by means of a partial replacement shall be specified to use the HTTP PATCH method (see IETF RFC 5789 [10]) to modify the current representation of a resource according to given modification instructions. The format of the PATCH message body shall be specified for each resource where the PATCH method is supported using one or several of the following encodings:
-	If no modification of individual elements within an array needs to be supported, the "JSON Merge Patch" encoding of changes defined in IETF RFC 7396 [7] should be used.
-	If a modification of individual elements within an array needs to be supported, the "JSON Patch" encoding of changes defined in IETF RFC 6902 [8] shall be used.
-	If a modification of a resource with multiple datasets needs to be supported, the HTTP multipart message with the multipart/mixed content-type as described in IETF RFC 2046 [aa] shall be used.
A single of the above encodings shall be specified for each resource where the PATCH method is supported unless backward compatibility considerations necessitate the support of both encodings.
NOTE 1:	In Rel-15 a single encoding will be selected for each resource as backward compatibility considerations do not yet apply.
NOTE 2:	"JSON Merge Patch" does not support the modification of individual elements within an array. However, it supports the modification of individual elements within maps (see clause 5.2.4.2). Collections of elements can be modelled as maps, instead of arrays, if a partial modification using PATCH is desired.
NOTE 3:	The Open API description of the body of HTTP PATCH requests is specified in clause 5.3.8.
Figure 4.6.1.1.3.2-1 illustrates updating a resource using HTTP PATCH.

Figure 4.6.1.1.3.2-1: Updating a Resource using HTTP PATCH
1.	The resource that is to be updated is identified by the request URI. The payload body of the PATCH request shall contain a description of the requested modifications of the resource. For the "JSON Merge Patch" encoding defined in IETF RFC 7396 [7] and the "Content-Type" header shall be set to "application/merge-patch+json". For the "JSON Patch" encoding of changes defined in IETF RFC 6902 [8] the "Content-Type" header shall be set to "application/json-patch+json". For resources with multiple datasets the encoding for HTTP multipart messages with the multipart/mixed content-type as defined in IETF RFC 2046 [aa] shall be used. For forward compatibility, the NF service producer shall ignore received modification instructions of unknown attributes in the resource unless specified otherwise by the particular application.
2.	On success, "204 No Content" or "200 OK" shall be returned.
On failure, the appropriate HTTP status code indicating the error shall be returned and appropriate additional error information should be returned in the PATCH response body (see clause 4.8).

* * * Next Change * * * *
[bookmark: _Toc19702512][bookmark: _Toc27751673][bookmark: _Toc35971759][bookmark: _Toc35976008][bookmark: _Toc44849465][bookmark: _Toc51853107][bookmark: _Toc51859780][bookmark: _Toc155107190]5.3.8	Describing the body of HTTP PATCH requests
[bookmark: _Toc19702513][bookmark: _Toc27751674][bookmark: _Toc35971760][bookmark: _Toc35976009][bookmark: _Toc44849466][bookmark: _Toc51853108][bookmark: _Toc51859781][bookmark: _Toc155107191]5.3.8.1	General
As described in clause 4.6.1.1.3.2, the options to use for bodies of HTTP PATCH requests either useare
-	Aa "JSON Merge Patch" encoding as defined in IETF RFC 7396 [7], or.
-	Aa "JSON Patch" encoding as defined IETF RFC 6902 [8].
-	A HTTP multipart messages with the multipart/mixed content-type as defined in IETF RFC 2046 [aa].
It is possible to allow the threeboth encodings in a OpenAPI Specification [4] offering both the three schemas as alternative contents.
NOTE:	In Rel-15 a single encoding will be selected for each resource as backward compatibility considerations do not yet apply.
An example OpenAPI specification file offering both PATCH encodings is included in Annex D.
[bookmark: _Toc19702514][bookmark: _Toc27751675][bookmark: _Toc35971761][bookmark: _Toc35976010][bookmark: _Toc44849467][bookmark: _Toc51853109][bookmark: _Toc51859782][bookmark: _Toc155107192]5.3.8.2	JSON Merge Patch
In the OpenAPI Specification [4] file, the content field key of the Request Body Object shall contain "application/merge-patch+json". The content field value is a Media Type Object identifying the applicable patch body Schema Object. The patch body Schema Object may contain structured data types derived from the data types used in the schema to describe a complete representation of the resource in such a manner that attributes that are allowed to be modified are listed in the "properties" validation keyword.
NOTE 1:	A derived structured data type is beneficial if the data types used to describe a complete representation of the resource contains mandatory attributes, if attributes are allowed to be removed by the PATCH operation, or if a checking by the OpenAPI tooling that only allowed modifications are done via the "additionalProperties: false" keyword is desired. It also provides a clear description in the OpenAPI specification file to developers which modifications need to be supported.
As an alternative, the data types used in the schema to describe a complete representation of the resource may be used if any attributes that are allowed to be removed are marked as "nullable: true" in that schema.
Any attributes that are allowed to be removed shall be marked as "nullable: true" in the patch body Schema Object.
The "additionalProperties: false" keyword may be set.
NOTE 2:	The "additionalProperties: false" keyword enables the OpenAPI tooling to check that only allowed modifications are done. Extensions of the object in future releases are still possible under the assumption that the supported features mechanism is used to negotiate the usage of any new attribute prior to the PATCH invocation. If new optional attributes are expected to be introduced without corresponding supported feature or if PATCH can be used as first operation in an API, the usage of the "additionalProperties: false" keyword is not appropriate.
[bookmark: _Toc19702515][bookmark: _Toc27751676][bookmark: _Toc35971762][bookmark: _Toc35976011][bookmark: _Toc44849468][bookmark: _Toc51853110][bookmark: _Toc51859783][bookmark: _Toc155107193]5.3.8.3	JSON PATCH
In the OpenAPI Specification [4] file, the content field of the key Request Body Object shall contain "application/json-patch+json". The content field value is a Media Type Object identifying the applicable patch body. It may contain a mutually exclusive list (using the "oneOf" keyword) of all allowed modifications as <path, op, value> tuples, where "path" is a string containing a JSON Pointer value referring to a JSON object that is allowed to be modified, "op" is an enumeration of allowed JSON PATCH operations on the JSON object identified by "path" and "value" representing the schema/type of the value that will be updated or added at the JSON object identified by "path". In addition, an open alternative containing an object with no properties may be added using the "anyOf" keyword.
NOTE 1:	A mutually exclusive list provides a clear description in the OpenAPI specification file to developers which modifications need to be supported. This is of particular interest if only a limited number of modifications need to be supported. If no open alternative is included, the OpenAPI tooling will also check that only allowed modifications are done.
NOTE 2:	The open alternative allows for extensions of the PATCH in scenarios where new optional attributes are expected to be introduced without corresponding supported feature or if PATCH can be used as first operation in an API.
5.3.8.x	Multipart Messages
In the OpenAPI Specification [4] file, the content field key of the Request Body Object shall contain "multipart/mixed". The content field value is a Media Type Object identifying the applicable patch body Schema Object.
The resource is encoded as an HTTP multipart message with the multipart/mixed content-type as described in IETF RFC 2046 [aa].
The boundary parameter is used to delimit each part (Start of parts to first body part, second body part, etc) and shall be set to a value as in accordance with IETF RFC 2046 [aa].
The JSON body part will always be inserted as the first body part of the message and shall adhere to the JSON document structure defined in IETF RFC 6902 [14], the Content-Id of the first body part shall be "patch" and the content type shall be "application/json-patch+json". The content field value of the first body part is a Media Type Object identifying the applicable patch body and encoded as specified in clause 5.3.8.3.
Use of multipart messages in HTTP PATCH is documented in specific specifications.
* * * Next Change * * * *
[bookmark: _Toc19702537][bookmark: _Toc27751698][bookmark: _Toc35971784][bookmark: _Toc35976033][bookmark: _Toc44849490][bookmark: _Toc51853132][bookmark: _Toc51859805][bookmark: _Toc114583847][bookmark: _Toc155107217]Annex D (informative):
Example of an OpenAPI specification file for Patch
As described in clause 4.6.1.1.3.2, the bodies of HTTP PATCH requests will either use a "JSON Merge Patch" encoding as defined in IETF RFC 7396 [7], or a "JSON Patch" encoding as defined IETF RFC 6902 [8], or an HTTP multipart message with the multipart/mixed content-type as described in IETF RFC 2046 [aa]. This annex provides an example OpenAPI Specification [4] allowing both encodings.
NOTE:	Both encoding possibilities are shown in this example for illustrative purposes. However, only a single of the above encodings will be specified for each resource where the PATCH method is supported unless backward compatibility considerations necessitate the support of both encodings.
openapi: 3.0.0

info:
 version: "1.0.0"
 title: PATCH Example

paths:
 /inventory:
 post:
 summary: adds an inventory item
 operationId: addInventory
 description: Adds an item to the system
 responses:
 '201':
 description: item created
 '400':
 description: 'invalid input, object invalid'
 '409':
 description: an existing item already exists
 requestBody:
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/InventoryItem'
 description: Inventory item to add

 /inventory/{id}:
 get:
 summary: read inventory item
 parameters:
 - name: id
 in: path
 required: true
 schema:
 type: integer
 responses:
 '200':
 description: search results matching criteria
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/InventoryItem'
 '400':
 description: bad input parameter
 patch:
 summary: patch inventory item
 parameters:
 - name: id
 in: path
 required: true
 schema:
 type: integer
 requestBody:
 required: true
 content:
 application/json-patch+json:
 schema:
 $ref: '#/components/schemas/PatchInventoryItem'
 application/merge-patch+json:
 schema:
 $ref: '#/components/schemas/MergePatchInventoryItem'
 multipart/mixed:
 schema:
 $ref: '#/components/schemas/MultipartPatch'
 encoding:
 patch: # The patch part shall be the first part
 contentType: application/json-patch+json
 headers:
 Content-Id:
 schema:
 type: string
 required: true
 binaryBlocks: # 0 or more block parts may follow the patch part
 contentType: '*/*' # Block part can be of any type
 headers:
 Content-Id: # Block identifier is defined by the Content-Id header.
 schema:
 type: string
 required: true
 Content-Transfer-Encoding:
 schema:
 type: string
 required: true

 responses:
 '200':
 description: Patch was succesfull and updated Inventory Item is returned.
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/InventoryItem'
 '204':
 description: Patch was succesfull
 '400':
 description: bad input parameter

components:

 schemas:
 InventoryItem:
 type: object
 required:
 - name
 - manufacturer
 properties:
 id:
 type: integer
 name:
 type: string
 manufacturer:
 $ref: '#/components/schemas/Manufacturer'
 customers:
 type: array
 items:
 type: string

 Manufacturer:
 type: object
 description: Represents the manufacturer.
 required:
 - name
 properties:
 name:
 type: string
 homePage:
 type: string
 format: url
 phone:
 type: string

 ManufacturerRm:
 type: object
 description: >
 This data type is defined in the same way as the "Manufacturer" data type,
 but with the OpenAPI "nullable: true" property.
 required:
 - name
 properties:
 name:
 type: string
 homePage:
 type: string
 format: url
 phone:
 type: string
 nullable: true

 PatchInventoryItem:
 type: array
 description: A JSON PATCH body schema to Patch selected parts of an Inventory Item
 items:
 anyOf:
 - oneOf:
 - type: object
 description: Modifies the URL of a Manufacturer
 properties:
 op:
 type: string
 enum:
 - "add"
 - "remove"
 - "replace"
 path:
 type: string
 pattern: '^\/manufacturer\/homePage$'
 value:
 type: string
 format: url
 required:
 - "op"
 - "path"
 - type: object
 description: Modifies a Manufacturer
 properties:
 op:
 type: string
 enum:
 - "replace"
 path:
 type: string
 pattern: '^\/manufacturer$'
 value:
 $ref: '#/components/schemas/Manufacturer'
 required:
 - "op"
 - "path"
 - "value"
 - type: object
 description: Modifies a Customer
 properties:
 op:
 type: string
 enum:
 - "add"
 - "remove"
 - "replace"
 path:
 type: string
 pattern: '^\/customers\/(-|\d+)$'
 value:
 type: string
 required:
 - "op"
 - "path"
 - type: object
 description: Open Alternative
 minItems: 1

 MergePatchInventoryItem:
 description: A JSON Merge PATCH body schema to Patch selected parts of an Inventory Item
 type: object
 properties:
 manufacturer:
 $ref: '#/components/schemas/ManufacturerRm'
 customers:
 type: array
 description: Allows to replace the entire array, but not to modify individual elements.
 items:
 type: string

 BinaryBlock:
 description: A Block can be of any type
 example: >-
 "QmxvY2sgY29udGVudA=="

 MultipartPatch:
 description: Definition of a Record Patch
 type: object
 properties:
 patch:
 # json patch as defined in RFC 6902
 type: array
 items:
 $ref: 'TS29571_CommonData.yaml#/components/schemas/PatchItem'
 minItems: 1
 blocks:
 # List of multipart data
 type: array
 description: list of opaque Block's being reffered to by PatchItems
 items:
 $ref: '#/components/schemas/BinaryBlock'
 minItems: 1
 required:
 - patch
 example: >-
 {"patch": [{ "op": "add", "path": "/firstBodyPart/callbackReference", "value": "https://example.com" }, { "op": "copy", "from": "/binaryBlocks/blockID1", "to": "/Binaryblocks/blockID2" }, { "op": "add", "path": "/binaryBlocks/blockID1", "value": "addedBlock1" }], "blocks": [{"Content-Id": "addedBlock1", "Content-Type": "text/plain", "content": "QmxvY2sgY29udGVudA=="}]}

* * * End of Changes * * * *

image1.emf
NF service

consumer

NF service

producer

1. PUT …/resource (ResourceRepresentation)

2. 204 No Content ()

or 200 OK

Microsoft_Visio_2003-2010_Drawing4.vsd
NF service consumer

NF service producer

1. PUT …/resource (ResourceRepresentation)

2. 204 No Content () or 200 OK

image2.emf
NF service

consumer

NF service

producer

1. PATCH …/resource (ModificationInstructions)

2. 204 No Content ()

or 200 OK

Microsoft_Visio_2003-2010_Drawing5.vsd
NF service consumer

NF service producer

1. PATCH …/resource (ModificationInstructions)

2. 204 No Content ()
or 200 OK

