
3GPP TSG-CT WG4 Meeting #117	C4-233496
Göteborg, Sweden, 21st– 25th August 2023

Source:	Nokia, Nokia Shanghai Bell
Title:	Pseudo-CR on QUIC IETF RFC references update
Spec:	3GPP TR 29.893 v1.7.0
Agenda item:	6.1.2
Document for:	Approval

1. Reason for Change
IETF WG QUIC has concluded many of the QUIC related drafts to RFCs and these references need to be updated accordingly.
2. Proposal
It is proposed to agree the following changes to 3GPP TR 29.893 v1.7.0.

Page 1

* * * First Change * * * *
[bookmark: _Toc34228639][bookmark: _Toc43488749][bookmark: _Toc50359378][bookmark: _Toc63666660]2	References
The following documents contain provisions which, through reference in this text, constitute provisions of the present document.
-	References are either specific (identified by date of publication, edition number, version number, etc.) or nonspecific.
-	For a specific reference, subsequent revisions do not apply.
-	For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same Release as the present document.
[1]	3GPP TR 21.905: "Vocabulary for 3GPP Specifications".
[2]	3GPP TS 23.501: "System Architecture for the 5G System; Stage 2".
[3]	3GPP TS 23.502: "Procedures for the 5G System; Stage 2".
[4]	3GPP TS 29.500: "5G System; Technical Realization of Service Based Architecture; Stage 3".
[5]	IETF RFC 9000draft-ietf-quic-transport-29: "QUIC: A UDP-Based Multiplexed and Secure Transport".
[6]	IETF RFC 9001draft-ietf-quic-tls-29: "Using Transport Layer Security (TLS) to Secure QUIC".
[7]	IETF RFC 9114draft-ietf-quic-http-29: " Hypertext Transfer Protocol (HTTP/3) over QUIC".
[8]	IETF RFC 9002draft-ietf-quic-recovery-29: "QUIC Loss Detection and Congestion Control".
[9]	IETF RFC 8999draft-ietf-quic-invariants-09: "Version-Independent Properties of QUIC".
[10]	IETF RFC 9204draft-ietf-quic-qpack-16: "QPACK: Header Compression for HTTP/3 over QUIC".
[11]	IETF RFC 5246: "The Transport Layer Security (TLS) Protocol Version 1.2".
[12]	IETF RFC 8446: "The Transport Layer Security (TLS) Protocol Version 1.3".
[13]	IETF RFC 7540: "Hypertext Transfer Protocol Version 2 (HTTP/2)".
[14]	IETF RFC 7541: "HPACK: Header Compression for HTTP/2".
[15]	Void
[16]	IETF RFC 5682: "Forward RTO-Recovery (F-RTO): An Algorithm for Detecting Spurious Retransmission Timeouts with TCP".
[17]	IETF draft-dukkipati-tcpm-tcp-loss-probe-01: "Tail Loss Probe (TLP): An Algorithm for Fast Recovery of Tail Losses".
[18]	IETF RFC 6582: "The NewReno Modification to TCP's Fast Recovery Algorithm".
[19]	3GPP TS 29.510: "Network Function Repository Services".
[20]	IETF RFC 7838: "HTTP Alternative Services".
[21]	IETF draft-pardue-httpbis-http-network-tunnelling-01: "HTTP-initiated Network Tunnelling (HiNT)".
[22]	IETF RFC 7231: "Hypertext Transfer Protocol (HTTP/1.1): Semantics and Content".
[23]	IETF RFC 7230: "Hypertext Transfer Protocol (HTTP/1.1): Message Syntax and Routing".
[24]	3GPP TS 33.210: "3G security; Network Domain Security (NDS); IP network layer security".
[25]	GSMA NG.113: "5GS Roaming Guidelines".
[26]	IETF RFC 8312: "CUBIC for Fast Long-Distance Networks".
[27]	3GPP TR 23.742: "Study on Enhancements to the Service-Based Architecture".
[28]	IETF RFC 8164: "Opportunistic Security for HTTP/2".
[29]	IETF RFC 7657: "Differentiated Services (Diffserv) and Real-Time Communication".
[30]	Taking a Long Look at QUIC: "https://conferences.sigcomm.org/imc/2017/papers/imc17-final39.pdf".
[31]	IETF RFC 5288: "AES Galois Counter Mode (GCM) Cipher Suits for TLS".
[32]	Developing and deploying a TCP replacement for the Web: "https://www.netdevconf.org/0x12/session.html?developing-and-de/ploying-a-tcp-replacement-for-the-web".
[33]	Optimizing UDP for content delivery: "http://vger.kernel.org/lpc_net2018_talks/willemdebruijn-lpc2018-udpgso-paper-DRAFT-1.pdf".
[34]	UDP segmentation offload: "https://www.netdevconf.org/0x12/session.html?udp-segmentation-offload".
[35]	IETF draft-ietf-masque-connect-ip-13: "Proxying IP in HTTP".Multiplexed Application Substrate over QUIC Encryption (MASQUE) charter text: https://datatracker.ietf.org/doc/charter-ietf-masque/

* * * Next Change * * * *
[bookmark: _Toc34228647][bookmark: _Toc43488757][bookmark: _Toc50359386][bookmark: _Toc63666668]5.3	Features of QUIC
[bookmark: _Toc34228648][bookmark: _Toc43488758][bookmark: _Toc50359387][bookmark: _Toc63666669]5.3.1	General
QUIC is a multiplexed and secure transport protocol that runs on top of UDP. QUIC aims to provide a flexible set of features that allow it to be a general-purpose secure transport for multiple applications. The main parts of QUIC are defined in a set of documents IETF RFC 9000draft-ietf-quic-transport [5], IETF RFC 9002draft-ietf-quic-recovery [8], IETF RFC 9001draft-ietf-quic-tls [6], IETF RFC 8999draft-ietf-quic-invariants [9]. The highly integrated HTTP/2 over QUIC specification (now called HTTP/3) IETF RFC 9114draft-ietf-quic-http [7] and HTTP header compression IETF RFC 9204draft-ietf-quic-qpack [10] are developed in parallel with the core protocol. The protocol is developed by the Internet Engineering Task Force (IETF).
QUIC is mainly designed for the communication across insecure and untrusted internet, it integrates some features to tackle the performance, security and privacy related challenges, the applicability of applying QUIC in 5G Core shall be evaluated.
[bookmark: _Toc34228649][bookmark: _Toc43488759][bookmark: _Toc50359388][bookmark: _Toc63666670]5.3.2	Framing and Multiplexing
Provisions in this clause are based on IETF RFC 9000draft-ietf-quic-transport [5]. QUIC endpoints communicate by exchanging QUIC packets in UDP datagrams. One or more QUIC packets can be encapsulated in a single UDP datagram. QUIC packets may have long or short headers, for packets sent prior or after the completion of version negotiation and establishment of 1-RTT keys respectively. A sender multiplexes one or more QUIC frames of the same or different type(s) into a QUIC packet. The header contains only a limited set of fields, including Destination Connection ID field (see clause 5.3.712) and encrypted Packet Number field. Data sent by an application is encapsulated in STREAM frames which are carried in 0-RTT packets, if send as early data during the handshake, or afterwards in 1-RTT packets. An endpoint uses the Stream ID and Offset fields in STREAM frames to place data in order. The usage of the Offset field is further explained by the below example.
EXAMPLE:	Let's say a QUIC transport entity sends data via three STREAM frames. The first one is e.g. 10 octets long, starts at offset 0 and ends at offset 9. The second one is e.g. 20 octets long, starts at offset 10 and ends at offset 29. The third one is e.g. 7 octets long, starts at offset 30 and ends at offset 36. Let's also assume these frames are carried by separate QUIC packets A, B and C. In a sunny day scenario all three packets arrive at the receiving entity, which successfully acknowledges them. In a rainy day scenario, retransmissions are necessary. Let's say, packets A and B were lost and only packet C is delivered and acknowledged. The sender obviously needs to retransmit the content with offset 0..9 and 10..29. The sender can do this either by resending these two frames as initially sent (i.e. the three frames) or by sending a single, 10+20=30 octets long frame with offset 0..29.
This is one of the differences with TCP, as TCP only provides one stream and all data therefore are delivered in order, which means multiplexing is not supported in TCP. A sender can wait for a short period of time to bundle multiple frames into the same QUIC packet, e.g. to minimize the computational costs of packets sending.
QUIC supports multiple parallel data streams multiplexed on a single QUIC connection. Streams, which can be unidirectional or bidirectional in QUIC provide a lightweight, ordered byte-stream abstraction to an application. Packets transmitted in each stream use Authenticated Encryption with Additional Data (AEAD) to provide confidentiality and integrity protection. Streams can be long-lived, even during the lifetime of a connection to increase the reusability and limit the cost of opening stream (See IETF RFC 9000draft-ietf-quic-transport [5]). An endpoint of a bidirectional stream can terminate one direction and even encourage prompt termination in the opposite direction.
For each stream QUIC now only supports reliable and in-order delivery, but the implementations may choose to offer the ability to deliver data out of order. However, the QUIC layer is capable of delivering to the higher layer each stream independently as the streams in QUIC are independent of each other, thus it avoids blocking the delivery of any of the other streams when a packet loss contains only part of a stream which would be the case for HTTP/2 over TCP. Note that to achieve this efficiency the implementation needs to pay attention to pack payload from one stream into a single QUIC packet.
The HTTP/3 mapping for QUIC IETF RFC 9114draft-ietf-quic-http [7] utilizes this stream concept when realizing the different HTTP/2 (See IETF RFC 7540 [13]) streams. HTTP/3 also had to improve the HTTP header compression scheme HPACK (See IETF RFC 7541 [14] into QPACK (See IETF RFC 9204draft-ietf-quic-qpack [10]). With these changes HTTP can deliver independent requests and responses in the order they are successfully delivered to endpoints, without head of line blocking between HTTP streams which would be the case for HTTP/2 over TCP.
[bookmark: _Toc34228650][bookmark: _Toc43488760][bookmark: _Toc50359389][bookmark: _Toc63666671]5.3.3	Improved Recovery and Acknowledgement
The QUIC definition of its packet format and acknowledgement frame results in several improvements over TCP. The packet number is transmission-time ordered and strictly increasing. QUIC never retransmits a particular packet, only the lost data frames that need to be retransmitted. QUIC facilitates better way to calculate RTT by encoding the delay between packet reception and transmission of the acknowledgement. The QUIC acknowledgment also supports a very larger number of received and gap ranges.
Compared to TCP, QUIC will not be limited to a three blocks of selective acknowledgement (SACK) when using the timestamp option. Each ACK Frame in QUIC can contain variable number of ACK ranges, up to 62 bits (See IETF RFC 9000draft-ietf-quic-transport [5]), which helps to ease network throughputs in case of sending packets frequently. The strict packet numbers and explicit acknowledgement removes ambiguity between which packet is lost and which is acknowledged. Avoiding any unnecessary retransmissions of data that have reached the receiver. QUIC also avoids the retransmission uncertainty if the received packet was a delayed or retransmitted. QUIC's RTT samples are more accurate than what TCP can provide due to no ambiguity about which packets are used in measurement as well as the receiver side delay can be taken into account.
The congestion control algorithm of the current QUIC version is based on NewReno (See IETF RFC 6582 [18]), but implementations can use other congestion control algorithms, such as Cubic (see IETF RFC 8312 [26]), and endpoints are allowed to use different algorithms from one another. QUIC can customise different congestion control algorithms for different connections of the same application, and even alter it during the lifetime of a connection, see clause 5.3.159.4. QUIC provides generic congestion control signals to support different algorithms. QUIC also uses some additional modern loss recovery mechanisms by default, such as F-RTO (See IETF RFC 5682 [16]), and Tail Loss Probing (See IETF draft-dukkipati-tcpm-tcp-loss-probe [17]). These improvements give QUIC a better recovery mechanism.
[bookmark: _Toc34228651][bookmark: _Toc43488761][bookmark: _Toc50359390][bookmark: _Toc63666672]5.3.4	Encrypted and Integrity Protected Transport details
QUIC uses TLS 1.3 (See IETF RFC 9001draft-ietf-quic-tls [6], IETF RFC 8446 [12]), for key establishment, QUIC integrates the TLS 1.3 as its own encryption and integrity layer that protects the QUIC packets, but the security capability of HTTP/3 over QUIC/UDP is consistent with HTTP/2 over TLS1.3/TCP. Each QUIC packet has a packet header, using a short or a long format with a small number of fields that are unencrypted, but integrity protected. It is primarily the connection ID that is unencrypted and three reserved bits for experimentation in the short header. Even the packet number is encrypted using an independent mechanism from the payload.
The encryption and integrity protection provide confidentiality, privacy and source authenticity for the user of QUIC. However, the protection is also intended to prevent any middlebox in the network from interfering with the protocol, nor make assumptions about what the possible values any specific bit in the UDP payload can take. Ossification of the network has prevented a lot of improvements from being applied to TCP as middleboxes would either block or remove such changes.
Compared to TCP, this level of encryption does make certain type of network performance monitoring using middlebox basically impossible. Due to this, the QUIC short header introduces a latency spin bit (See IETF RFC 9000draft-ietf-quic-transport [5]) that is intended to enable middlebox to measure round-trip time between the middlebox and either endpoint of the connection if enabled by both end-points. The latency spin bit partially overcomes the drawback of impossible network performance monitoring caused by encryption in QUIC layer, but cannot support the message tracing by content inspection for the testing, monitoring and troubleshooting related scenarios.

* * * Next Change * * * *
[bookmark: _Toc34228653][bookmark: _Toc43488763][bookmark: _Toc50359392][bookmark: _Toc63666674]5.3.6	0-RTT Data
TLS 1.3 (IETF RFC 8446 [12]) includes support for early data or 0-RTT data, as it is also called. This is potentially usable by both HTTP/2 over TLS1.3/TCP as well as HTTP/3. This functionality can be used when client and server share a Pre-Shared Key (PSK), which can be arranged out of band or exist from an earlier connection. 0-RTT data has other security properties than for data sent after the handshake completes. Data sent as 0-RTT data will be possible to replay by an attacker that has seen the client to server exchange. Therefore, the use of 0-RTT data requires that the data is safe to replay. When using HTTP requests as 0-RTT data, the request performed must be one that is idempotent. Server may refuse to accept 0-RTT data for this reason.
A server accepts 0-RTT data on a connection needs more processing and computation cost. Servers need to consider the probability of replay and all associated costs when accepting 0-RTT (See IETF RFC 9001draft-ietf-quic-tls [6], IETF RFC 8446 [12]).

* * * Next Change * * * *
[bookmark: _Toc34228655][bookmark: _Toc43488765][bookmark: _Toc50359394][bookmark: _Toc63666676]5.3.8	Connection Migration
QUIC allows its connection to migrate while the HTTP/3 session progresses. This means for a client with multiple network interfaces an ongoing QUIC session can be moved to newly validated path via a newly discovered network interface, for example, in the case of a data session handover from WLAN to a 3GPP radio access technology. This is possible as QUIC sessions are identified by a set of connection IDs hence a particular QUIC session is not tightly coupled with a specific client IP address and port number. If a network interface appears with new IP addresses or an existing one disappears but the client has alternative network interfaces, the QUIC session does not need to be established again. The QUIC session can continue on a new interface after the client has validated the path to the server from the new interface address using PATH_CHALLENGE frames, with potentially a new connection ID from the previously communicated set of connection IDs.
NOTE:	IETF RFC 9000draft-ietf-quic-transport [5] does not mandate a new connection ID after connection migration. However such reuse is not recommended as this allows on path observers to link multiple source IP addresses to the same connection and identify the topological relationship of clients. See clause 9.5 of IETF RFC 9000draft-ietf-quic-transport [5].
It is possible that the server also has multiple IP addresses and has some preferences on which interface it would like to serve a particular client for load balancing or other management. QUIC allows server to receive a connection request to one IP address and migrate the connection to a preferred address in connection response immediately, this achieves faster connection migration than HTTP redirect. Currently, QUIC does not support change of server IP address in the middle of an ongoing session however, the server preferred address can be conveyed to the client during the TLS handshake as "preferred_address" transport parameter (see clause 9.6 of IETF RFC 9000draft-ietf-quic-transport [5]). If the new path to the preferred server address is valid then client sends all the future packets to the new server address. Here the client also uses a new connection ID for the new connection to the server's preferred address.

[bookmark: _Toc34228656][bookmark: _Toc43488766][bookmark: _Toc50359395][bookmark: _Toc63666677]* * * Next Change * * * *
[bookmark: _Toc34228658][bookmark: _Toc43488768][bookmark: _Toc50359397][bookmark: _Toc63666679]5.3.11	Protocol Versioning
QUIC has a 32-bit version field. It can be expected that QUIC will eventually exists in a number of proprietary and standardized versions. IETF is currently working on defining version 0x00000001. There exists a mechanism for the client to ask the server to enumerate all versions it support. The client when requesting to create a connection it will indicate the version desired to use. If supported then that is what will be used, otherwise it triggers the version negotiation. Some of the non-encrypted fields are defined as not being changeable independent of version as defined by the document for invariants (See IETF RFC 8999draft-ietf-quic-invariants [9]).
The QUIC versioning enables a very large degree of flexibility for future changes of QUIC. All aspects except for the invariants can be changed. This enables the tuning of QUIC to a specific use case or implementation of future improvements in transport protocol technology. This flexibility also indicates the need to be explicit about which QUIC version(s) that are to be supported by a specific SBI. Any analysis of benefits and downsides of QUIC must be explicit about which version is discussed.
[bookmark: _Toc34228659][bookmark: _Toc43488769][bookmark: _Toc50359398][bookmark: _Toc63666680]5.3.12	QUIC Extensibility
QUIC payloads are consists of one or more frames. Each frame starts with frame types followed by type specific flags. All the streams with data are carried over the STREAM frame type. QUIC's current specification defines a number of essential frame types. However, new frame types can be created and can be even application specific.
QUIC allows extensions to the protocol within the constraints of the protocol invariants (see properties of the QUIC transport protocol that are expected to remain unchanged as new versions of the protocol are developed, in IETF RFC 8999draft-ietf-quic-invariants [9]). Extensions can change the semantics of existing protocol components, but they need to be negotiated before being used. Permitted extensions include new frame types, new settings, error codes and uni-directional streams. This gives QUIC a unique way of to be extensible and customizable.
The usage of new frame types does not necessarily imply using a new protocol version. A peer can use transport parameters to indicate support to the peer that it can use a new frame type. However, this has the downside that the support of a certain frame type cannot be determined before establishing the transport connection; on the other hand, using a specific protocol version can be leveraged by a peer to determine this support prior to establishing the connection.

* * * Next Change * * * *
[bookmark: _Toc34228664][bookmark: _Toc43488774][bookmark: _Toc50359403][bookmark: _Toc63666685]5.3.17	62 bits stream identifiers
QUIC stream identifiers are coded as variable length integers allowing upto a length of 62 bits, instead of 31 bits with HTTP/2. Out of the available 62 bits for stream ID encoding, 2 least significant bits are used to indicate who initiates the stream (client / server) and whether the stream is unidirectional or bidirectional. Hence for client initiated bidirectional streams to carry the requests and responses of 3GPP Service Based Interfaces, the available space is 2^60 stream IDs.
NOTE:	For variable length integer encoding the 2 MSB bits are used to derive the length of the integer. The 2 MSB bits are coded as base 2 logarithm of the total length of the variable length integer in octets. Thus for a 64 bit sized entity, the 2 MSB bits are 11 (i.e. value 3), indicating that the length of the integer is 8 octets of which only 62 bits are usable. See clause 16 and clause 2.1 of IETF RFC 9000draft-ietf-quic-transport [5].
Stream ID exhaustion becomes nearly impossible during the lifetime of a QUIC connection. This may simplify the management of connections in 5GC.

* * * Next Change * * * *
[bookmark: _Toc34228671][bookmark: _Toc43488781][bookmark: _Toc50359410][bookmark: _Toc63666692]5.4.5	Connection ID and Connection Migration
The connection ID provides certain flexibility in how the implementers realize front-end load-balancers for QUIC as the QUIC connection is not bound to 5 tuples (protocols and ports). In the case of SBI, both for cloud native implementation or bare metal implementation, this connection ID will provide the ability to establish network interface agonistic connection and move the connect between the interfaces as required without terminating the QUIC connection.
Server-side migration is currently only specified to be done shortly after connection handshake using the Server Preferred Address mechanism discussed in Clause 9.6 of IETF RFC 9000draft-ietf-quic-transport [5]. This mechanism requests that the client sends the packet destined to the server to this preferred address instead of the original one. Future versions or extensions may specify mid connection server side migration.
Client-side migration may occur at any point after the handshake has completed. This can be done intentionally by the client when another network interface has become available, where it first probes the new path from this other interface to the server, and after path verification starts using non-probing packet, thus completing the migration. It can also occur implicit, due to a NAT rebinding where the server-side observable source address and port has changed due to this rebinding. Here the use of non-probing packets results in immediate path migration to the new path, and at the same time the server initiates a path validation.

* * * Next Change * * * *
[bookmark: _Toc34228675][bookmark: _Toc43488785][bookmark: _Toc50359414][bookmark: _Toc63666696]5.5.2	0-RTT DATA
0-RTT Data has very limited applicability to 3GPP SBI for several reasons. The foremost is the security properties of 0-RTT data. As the 0-RTT data is protected using a Pre-Shared Key (PSK) and not a connection specific established state, the 0-RTT data is possible to replay by an adversary. It is also does not have full forward secrecy, i.e. if the PSK key is later compromised, then this message can be decrypted at that point.
The possibility for replay has multiple impacts. If the HTTP request in the 0-RTT data was not idempotent then the state of the NF could be changed (so IETF RFC 9001draft-ietf-quic-tls [6] specifies that "0-RTT MUST NOT carry a self-contained trigger for any non-idempotent action"). Secondly, when replaying the order of requests can be changed by an adversary. Thus, changing the effect of them, e.g. moving a delete after a create. If multiple replays are allowed additional attacks are possible, including timing and measurement to attempt to determine other state. Overload concerns are also present both on the server side, as well as using 0-RTT as a method for amplifying the amount of data a spoofed source address attack results in.
Due to that many 3GPP SBI requests are not idempotent the potential use of 0-RTT data is very limited. By not allowing its use at all several vulnerabilities are avoided, resulting in a safer and less complex systems as no mitigations are needed.
In any case, given that the considerations on applicability of this feature are essentially related to security, it should be up to SA3 to determine whether it is recommended or not to use this feature in 3GPP networks; also, the recommendation may be dependent on intra vs inter -PLMN scenarios.

* * * Next Change * * * *
[bookmark: _Toc34228681][bookmark: _Toc43488791][bookmark: _Toc50359420][bookmark: _Toc63666702]6.2.2	When NF Service Consumer Side Uses QUIC
[bookmark: _Toc34228682][bookmark: _Toc43488792][bookmark: _Toc50359421][bookmark: _Toc63666703]6.2.2.1	Case A: Invoking http API Supporting Only TCP Transport
This case is not describe in IETF RFC 9114draft-ietf-quic-http [7].
In this scenario:
-	NF service consumer supports QUIC and has established a QUIC transport connection with its next hop HTTP proxy;
-	NF service consumer discovers that NF service producer supports only TCP.
-	The URI scheme of the API exposed by the NF service producer is http
In this case, the NF service consumer has the following options:
-	Option#1: The NF service consumer uses TCP transport towards the proxy as well. This implies the proxy also supports TCP transport (which is a reasonable assumption considering that during the migration from TCP to QUIC many HTTP entities will support both transports).
-	Option#2: The NF service consumer uses QUIC transport towards the HTTP proxy and the proxy uses TCP transport towards the NF service producer. The HTTP proxy discovers whether the NF service producer supports TCP or QUIC based on apriori connection setup. For example, in the case of SEPP all NFs in a PLMN connect to the SEPP and establish a HTTP/2 or HTTP/3 connection depending on what transport is supported by both the SEPP and the NF service producer. IETF RFC 9114draft-ietf-quic-http [7], clause 2.3.2 specifies that HTTP/3 clients shall indicate the target domain name during the TLS handshake of QUIC connection setup. The certificate provided at connection setup shall be valid for the target domain name.
Editor's Notes: It is unclear what domain name shall be used for the target domain name when the connection is with a proxy (proxy domain name or the origin server one).
The draft also says in clause 2.43.3 that a connection to a server endpoint may be reused for requests with multiple different URI authority components. The client may send any requests for which the client considers the server (the one at the existing connection endpoint) authoritative.
Editor's Notes: In our case the client knows that existing QUIC connection ends at a proxy and not at a server. So it is unclear if we can reuse an existing QUIC connection to a proxy endpoint. Also it is unclear if a client can consider a proxy as an authoritative server as proxies and servers are essentially different HTTP entities.
The draft loosely RFC specifies in clause 2.43.3 how the client knows that the server at the endpoint of the reused QUIC connection (the proxy in our case) is authoritative for requests directed to other domains. It mentions that typically the client discovers that a particular server is the authoritative HTTP/3 endpoint based on the client having received Alt-Svc HTTP response header or the HTTP/2 ALTSVC frame (see IETF RFC 7838 [20]).
Editor's Note:	Whether other mechanisms other than use of IETF RFC 7838 [20] can be considered to discover a particular HTTP/3 endpoint is the authoritative endpoint for a URI authoritative component is FFS.
Finally, the clients shall check that the nominated server can present a valid certificate for the Origin Server before considering it authoritative. Therefore, the HTTP proxy has to present a certificate to the HTTP/3 client on behalf of the HTTP Origin Server (NF service producer) that is valid for multiple domain names and signed by the client network's own certificate authority. In roaming, the client network owner (the VPLMN) and the origin server network owner (the HPLMN) are different authorities and such a certificate is impossible to issue by a regular certification authority (e.g. Verisign). The only possibility is that the HTTP client should be configured to trust the HTTP proxy as the certificate authority. Only then this option#2 will work.
-	Option#3: The NF service consumer uses QUIC transport towards the HTTP proxy. The proxy provides a certificate only valid for itself at QUIC connection setup. When the NF service consumer needs to send a request to an NF Service producer it first establishes a tunnel through the proxy by sending an HTTP CONNECT message in a new stream with an ":authority" pseudo-header field identifying the NF Service producer. The proxy then creates a TCP connection towards the NF service producer. Once the TCP connection is completed, a tunnel is created between the NF service consumer and producer. This tunnel is used by the NF service consumer to create a direct HTTP/2 connection (without an end to end TLS) with the NF service producer. HTTP/2 messages can now flow between the two entities. This is illustrated by the figure below.

Figure 6.2.2.1-1: http via HTTP/3 Proxy to NF Service Producer Supporting TCP
NOTE 1:	Option 3 is not described by IETF RFC 9114draft-ietf-quic-http [7] which only describes the use of the CONNECT method to setup a TLS session between an HTTP client and an Origin server. Most of the existing implementation also restricts the usage of CONNECT to https URIs. This option excludes the use of current implementations available on the market. However for 3GPP NF services, the HTTP clients will be the HTTP client libraries supported in various programming languages. One could program in such a way to use HTTP CONNECT via a proxy for http URI too.
NOTE 2: IETF RFC 9114draft-ietf-quic-http [7] doesn't explicitly say if the verifications listed in clause 2.43.3 of the draft RFC that authorize the reuse of an existing QUIC connection are applicable to the CONNECT method.
[bookmark: _Toc34228683][bookmark: _Toc43488793][bookmark: _Toc50359422][bookmark: _Toc63666704]6.2.2.2	Case B: Invoking http API Supporting QUIC Transport
In this scenario:
-	NF service consumer supports QUIC and has established a QUIC transport connection with its next hop HTTP proxy;
-	NF service consumer discovers that NF service producer also supports QUIC.
-	The URI scheme of the API exposed by the NF service producer is http
In this case the NF service consumer uses QUIC transport towards the HTTP proxy and the HTTP proxy also uses QUIC transport towards the NF service producer. The QUIC connections on the both side of the leg of HTTP proxy are separate QUIC connections. As TLS is integrated in QUIC, this means this setup would also terminate the TLS at the proxy which is undesirable. In case of proxying with HTTP/2 only the TCP connection is terminated at the proxy but the TLS connection on top of TCP is end-to-end.
The figure below illustrates the case where the HTTP client and server are connected with two QUIC connections through an HTTP proxy.
The connection with the HTTP proxy would be reused for requests sent to multiple domains. When the proxy needs to forward a message to a new HTTP server, it establishes a new QUIC connection with it. The server provides a valid certificate for itself.

Figure 6.2.2.2-1: http via HTTP/3 Proxy to NF Service Producer Supporting QUIC

Case B is not described in IETF RFC 9114draft-ietf-quic-http [7] and the same questions regarding the QUIC connection with the proxy as specified for Case A remains open with Case B.
As per IETF RFC 9114draft-ietf-quic-http [7], clause 2.43.3, a HTTP client MUST verify if the nominated HTTP server it is communicating with (i.e. HTTP proxy in this case) can present a valid certificate for the origin before considering it authoritative. Hence in order to setup an end to end QUIC connection between the HTTP client and the HTTP server via a HTTP/3 proxy, an equivalent of HTTP CONNECT to setup a tunnel is required. Currently such an option does not exist. HTTP CONNECT is used only when the URI scheme is https and upon getting a HTTP CONNECT request a HTTP/3 proxy establishes a TCP connection with the HTTP server (and not a QUIC connection) as specified in clause 5.24.4 of IETF RFC 9114draft-ietf-quic-http [7].
NOTE:	The use of HTTP CONNECT by HTTP clients when accessing https URI via a proxy is not mandated in IETF RFC 7231 [22]. However many browsers by default use HTTP CONNECT when accessing https URIs via a proxy. For 3GPP NF services, the HTTP clients will be the HTTP client libraries supported in various programming languages. One could program in such a way not to use HTTP CONNECT via a proxy and trust the certificates issued by the proxy effectively allowing the proxy to act as man in the middle.
IETF draft-pardue-httpbis-http-network-tunnelling-01 [21] tries to provide a solution that permits a UDP-based HTTP/3 client behind an HTTP proxy to establish an HTTP/3 session with the origin. As the successor approach, IETF is reviewing a working group formation proposal to work on a HTTP based proxying solution for end to end encrypted traffic, named MASQUE, see IETF draft-ietf-masque-connect-ip-13 [35]. This result of this working group will allow the end point to communicate with end to end QUIC encryption while use the proxy on the path. This means the HTTP client (consumer) will maintain a QUIC tunnelling connection towards the HTTP/3 proxy and inside that tunnel the consumer will have an end to end QUIC connection towards the HTTP server (provider).

* * * Next Change * * * *
[bookmark: _Toc34228685][bookmark: _Toc43488795][bookmark: _Toc50359424][bookmark: _Toc63666706]6.2.2.4	Case D: Invoking https API Supporting QUIC Transport
In this scenario:
-	NF service consumer supports QUIC and has established a QUIC transport connection with its next hop HTTP proxy;
-	NF service consumer discovers that NF service producer also supports QUIC.
-	The URI scheme of the API exposed by the NF service producer is https
In this case the following sequence of events happen
-	HTTP client establishes a QUIC connection with the HTTP proxy
-	HTTP client sends a HTTP CONNECT to the proxy with URI set to the NF service producer API URI.
-	As specified in IETF RFC 9114draft-ietf-quic-http [7] clause 5.24.4, the proxy establishes a TCP connection to the HTTP server. However it is desirable that a mechanism is available for the HTTP/3 proxy to instruct the use of QUIC connection to a HTTP server instead of TCP.
-	Currently there is no mechanism that exists in IETF RFC 9114draft-ietf-quic-http [7] where a HTTP/3 proxy is instructed to use a QUIC connection to a HTTP server instead of TCP.
IETF draft-pardue-httpbis-http-network-tunnelling-01 [21] tries to provide a solution that permits a UDP-based HTTP/3 client behind an HTTP proxy to establish an HTTP/3 session with the origin. But at this moment this is an individual draft and is in very early stage.
According to RFC 7230 [23] clause 2.7.3, the client shall ensure that its connection to the origin server is secured through the use of strong encryption, end-to-end, prior to sending the first HTTP request when the https URI scheme is used.
A HTTP client implementation may decide not to enforce E2E security though the https URI scheme is used and connection to the Origin server is done via a proxy. IETF RFC 7231 [22] does not mandate the use of HTTP CONNECT for accessing https URI via a proxy. If a HTTP client decides not to use CONNECT, then it may trust the certificates issued by the HTTP/3 proxy on behalf of the HTTP/3 server signed by the proxy's certificate authority, thus allowing the HTTP/3 proxy to act as man in the middle. This would violate the requirement for the HTTP client in RFC 7230 [23] clause 2.7.3.

* * * Next Change * * * *
[bookmark: _Toc34228688][bookmark: _Toc43488798][bookmark: _Toc50359427][bookmark: _Toc63666709]6.2.3.2	Invoking https API Supporting QUIC Transport
In this scenario:
-	NF service consumer supports only TCP and has established a TCP transport connection with its next hop HTTP proxy;
-	NF service consumer discovers that NF service producer supports QUIC.
-	The URI scheme of the API exposed by the NF service producer is https
When https scheme is used, the HTTP client first sends a HTTP CONNECT request to the HTTP proxy. However as per IETF RFC 9114draft-ietf-quic-http [7], clause 5.24.4 and IETF RFC 7231 [22], clause 4.3.6, when a HTTP proxy receives a HTTP CONNECT method, it establishes a TCP based tunnel towards the NF service producer (the HTTP destination origin server) so that a TLS connection end to end from the HTTP client to the HTTP destination origin server can be setup. Since the semantics of HTTP CONNECT demands this, the HTTP proxy will not use QUIC towards the HTTP server (NF service producer) even if it supports QUIC.
A HTTP client implementation may decide not to use HTTP CONNECT to access a https URI via a proxy. IETF RFC 7231 [22] does not mandate the use of HTTP CONNECT for accessing https URI via a proxy. If a HTTP client decides not to use CONNECT, then it may trust the certificates issued by the HTTP/3 proxy on behalf of the HTTP/TCP server signed by the proxy's certificate authority, thus allowing the HTTP/3 proxy to act as man in the middle. This would violate the requirement for the HTTP client in RFC 7230 [23] clause 2.7.3.

* * * Next Change * * * *
[bookmark: _Toc34228691][bookmark: _Toc43488801][bookmark: _Toc50359430][bookmark: _Toc63666712]6.3.2	Connection setup and management
To use HTTP over QUIC requires explicit discovery of QUIC protocol support in the client and server. The server can advertise the support for the QUIC as a transport protocol then client can use some explicit information provided by the server or prior knowledge of the previous contact to the server to select QUIC as a transport protocol. Different alternatives to do the discovery of QUIC support in the NFs are discussed in clause 7.2.
QUIC connection level settings are communicated between client and server at the crypto handshake. However, the HTTP/3 specific settings (see IETF RFC 9114draft-ietf-quic-http [7]) are set via SETTINGs frame sent by the client and server via the HTTP/3 control stream after QUIC connection is established.
As QUIC allows stream multiplexing the HTTP clients can multiplex multiple HTTP/3 requests on to same QUIC connection as long as the server has the authority to serve the request. This reduces the need for multiple connections and improves performance by avoiding the time it takes to establish new connections. In case of SBI, every consuming NF will originate request to a specific provider NF. Hence, there will be one to one mapping between the server and origin. However, it is also possible to install a frontend proxy to hide a number of provider NFs that is managed by one administration. In this case the NF consumer will establish single connection towards the frontend proxy and multiplex request towards different NF providers over a single QUIC connection, treating the frontend proxy as a server endpoint.
[bookmark: _Toc34228692][bookmark: _Toc43488802][bookmark: _Toc50359431][bookmark: _Toc63666713]6.3.3	Streams, framing and multiplexing
The QUIC stream number space is larger than that of HTTP/2. HTTP/3 uses a completely new framing concept. The HTTP/2 framing is completely changed, including the basic HTTP/2 Frame Header layout. Consequently HTTP/3 uses only the QUIC streams and does not have a stream Identifier in the HTTP/3 frame header..
Another important difference is the HTTP/3 only guarantee ordered delivery on the stream level while HTTP2 expects absolute ordering on the frames across multiple streams. HTTP/3 will break any such ordering assumption.
When HTTP runs over QUIC the HTTP layer does not require to do any stream multiplexing. QUIC maps each of its streams to a HTTP transaction. A stream is closed when the RESET_STREAM is received in QUIC. In HTTP/2, a stream is half-closed when the frame with END_STREAM bit set is received, and is closed when the RESET_STREAM is received. The additional difference is that in the current specification, HTTP/3 does not use server initiated bidirectional stream. This means unidirectional streams are created from both the client and server with indication of the purpose of the stream as stream header at the beginning of the streams. All client initiated bi-directional streams are used for requests and responses.
Editor's Note:	Some aspects of connection management are still not clearly defined in the IETF drafts, such as the usage of client-initiated vs. server-initiated streams, and bi-directional vs. unidirectional streams. A more accurate description and analysis of these aspects is FFS, once the IETF drafts are further developed.
The HTTP/3 frame type definition follows QUIC encoding concept. QUIC uses a variable length integer encoding which allows a larger number of stream IDs compared to HTTP/2 encoding. This change results in different HTTP/3 frame types and requires a mapping from HTTP/2 to HTTP/3 frame types. HTTP/3 (see IETF RFC 9114draft-ietf-quic-http [7]) defines this mapping of HTTP/2 over HTTP/3.

* * * Next Change * * * *
[bookmark: _Toc34228694][bookmark: _Toc43488804][bookmark: _Toc50359433][bookmark: _Toc63666715]6.3.5	Server Push
HTTP/3 uses a different server push mechanism than what is defined for HTTP/2 in IETF RFC 7540 [13]. HTTP/3 uses two new frames to accomplish server push – a) a modified PUSH_PROMISE frame and b) a MAX_PUSH_ID. The modified PUSH_PROMISE frame does not refer to a stream as originally designed in IETF RFC 7540 [13], it uses as PUSH_ID that uniquely identifies a server push. HTTP/3 defines the use of PUSH_IDs in PUSH_PROMISE frame, DUPLICATE_PUSH frame, CANCEL_PUSH frame and PRIORITY_FRAME in addition to their use in Push Stream headers (a unidirectional server initiated stream) for now. The server can only push, and it can initiate pushing only one it receives a MAX_PUSH_ID frame from the corresponding client. Details of the modified server push mechanism is described in IETF RFC 9114draft-ietf-quic-http [7].
[bookmark: _Toc34228695][bookmark: _Toc43488805][bookmark: _Toc50359434][bookmark: _Toc63666716]6.3.6	Compression (HPACK vs QPACK)
The Header Compression for HTTP/2, HPACK (see IETF RFC 7541 [14]), provides compression of HTTP header fields. Significantly reducing the headers, especially for sequential HTTP/2 request responses to the same server, where repeated and redundant information is efficiently compressed. The use of HPACK in HTTP/2 is one of the more significant performance improvements compared to HTTP 1.0 or 1.1. HPACK was defined based on one important assumption, namely the TCP in-order delivery of the different HTTP/2 frame types across all the streams. Thus, the encoder knows in which order the decoder will receive and process the various frames, and how the decoder state will be updated. HTTP/3 does not provide the same deterministic and guaranteed in order delivery mechanism between different HTTP requests. HTTP/3 can avoid this head of line blocking and provide improved performance by delivering to higher layers the HTTP messages in the order they are successfully delivered to the peer. However, if one would use HPACK without modifications, this could result in the decoder blocking or producing the wrong output. Therefore, header Compression for HTTP/3, QPACK (see IETF RFC 9204draft-ietf-quic-qpack [10]), is being defined.
QPACK is a redesigned version of HPACK that can support out-of-order delivery. It allows flexibility in the encoder to perform trade-offs between compression ratios and likelihood of head of line blocking due to out of order delivery. The changes in QPACK allows for much reduced head of line blocking at similar compression efficiency for a given packet loss rate. It also provides the implementation freedom to select how robust the transaction should be against packet loss. This at the cost of requiring HTTP/3 servers to implement the new QPACK mechanism, even if some reuse of the HPACK implementation is possible.

* * * Next Change * * * *
[bookmark: _Toc34228706][bookmark: _Toc43488816][bookmark: _Toc50359445][bookmark: _Toc63666727]8.2.2	Using Alt-Svc Header
The current QUIC working group draft on HTTP over QUIC (HTTP/3) (See IETF RFC 9114draft-ietf-quic-http [7]) defines a discovery method of QUIC support using Alt-Svc HTTP response header defined in IETF RFC 7838 [20]. In this case the NF as HTTP server can notify the NF as HTTP client about the support of QUIC protocol with a HTTP response header with any HTTP response. An example of such response will look like below:
HTTP/1.1 200 OK
Content-Type: text/html
Alt-Svc: h3=":50443";quic="1,1abadaba"

Here, the " h3" is the ALPN token identifies HTTP/3 and "quic" is a new parameter defined to advertise the versions supported by the NF. The syntax of Alt-Svc is defined in IETF RFC 7838 [20] and the "quic" parameter for Alt-Svc header to provide the QUIC version hints, is defined in HTTP/3 IETF draft (See IETF RFC 9114draft-ietf-quic-http [7]).
In this method, the HTTP client acting as NF consumer needs to start connection using TCP for the first contact with a HTTP server acting as NF provider. If the HTTP server response includes the Alt-Svc header then the HTTP client will re-establish HTTP connection over QUIC and save the protocol preference for further connection. After new QUIC connection established towards the HTTP server, the HTTP client must send all the requests over QUIC connection. The HTTP client then can terminate the previously established TCP connection.
As described, the downside of this method is that the HTTP client for the first contact with a HTTP server has to establish TCP connection to discover the QUIC support and terminate the already establish TCP connection. However, this should be only one-time event after discovering that one HTTP server supports QUIC the client must not repeat this discovery event.
This method allows a gradual deployment of QUIC in the PLMNs and does not require extra information exchange at the NF service discovery phase.
This solution requires that the HTTP server (NF Service Producer) can be reached over TCP in addition to QUIC, so a server supporting only QUIC would need additional mechanisms to let NF Service Consumers discover such support.

* * * Next Change * * * *
[bookmark: _Toc34228721][bookmark: _Toc43488831][bookmark: _Toc50359460][bookmark: _Toc63666740]9.3	QUIC's Security Mechanisms
QUIC as currently specified do not support any unencrypted mode, nor unauthenticated. This have several implications on the SBA architecture. Some of them have already been touched upon before.
-	There is a requirement (see clause 2.3.2 of IETF RFC 9114draft-ietf-quic-http [7]) of explicitly addressing the QUIC peer when establishing a connection and include the target domain in the TLS handshake using SNI or other mechanism. This prevents any type of transparent HTTP proxies, and the next hop must always be known by the client.
-	Use of any HTTP proxy will require additional functionality as discussed in Clause 9.2 and where only the one type of proxying, i.e. the use HTTP Connect method to establish end-to-end TLS connections over TCP from proxy to designated target domain. The other proxy cases discussed in Clause 6 lacks mature specifications. The current implication is that to enable QUIC in Release 16 SBA Architecture needs to be capable of operating without any HTTP proxies.
-	Potential use of HTTP opportunistic security (IETF RFC 8164 [28]) for any "http" scheme requests over QUIC. This requires an additional QUIC connection as "http" scheme requests and "https" scheme requests are not allowed in the same connection (see clause 2.2 of IETF RFC 8164 [28]). It also requires additional HTTP server support to indicate this capability. This could enable QUIC migrations even if there are still some SBIs that doesn't support "https" scheme requests. However, if such interfaces exist it would be securer to upgrade them to support "https" scheme.
To summarize, with the current version of QUIC and HTTP/3 the 3GPP SBA architecture needs to assume that all requests and SBI will only use "https" scheme requests, that they will explicitly address the target NF, and that there is no possibility to deploy HTTP Proxies or other intermediaries acting above UDP layer in between NFs.

* * * Next Change * * * *
[bookmark: _Toc34228738][bookmark: _Toc43488848][bookmark: _Toc50359477][bookmark: _Toc63666757]11.1.3	Issues
Following issues are identified:
1)	The QUIC layer is end-to-end encrypted and use of proxies between end-to-end QUIC connections is not sufficiently covered. There is no support for instance to support an end-to-end QUIC connection through a proxy using HTTP CONNECT.
2)	The QUIC layer is end-to-end encrypted and thus allows less accurate network monitoring capabilities than TCP.
3)	The server cannot migrate the connection to a different network interface / local address during the lifetime of the connection; this requires clients to still rely on alternate QUIC connections for failover to an alternate path; also solutions for ensuring availability and stability of connections (e.g. failover to a secondary path like supported in SCTP multi-homing) are not provided at the QUIC protocol layer but have to be implemented at the application layer similar to HTTP/2.
4)	IETF RFC 9002draft-ietf-quic-recovery [8] provides recommendations on congestion control (e.g. TCP NewReno). According to IETF RFC 9002draft-ietf-quic-recovery [8], implementations may use other congestion control algorithms than TCP NewReno and endpoints MAY use different algorithms from one another. Some measurements have shown that QUIC can overtake TCP in terms of how much bandwidth it can take leading to unfairness even if the congestion algorithm is the same (see e.g. "Taking a Long Look at QUIC" [30]). This leads to possible concerns on how fairly QUIC traffic mixes with TCP traffic, as this would be the case e.g. during migration scenarios (see clause 8.4). The issue becomes more complicated when mixing different congestion algorithms and deserves more experimentation.

* * * End of Changes * * * *

image1.emf
UDPQUIC Transport SecurityQUIC StreamHTTP/3 ClientHTTP/3 ProxyHTTP/TCP ServerCONNECT nf-producer.comTCPHTTP/2 ConnectionHTTP/2 StreamHTTP GET/PUT/POST/DELETE

Microsoft_Visio_Drawing.vsdx
UDP
QUIC Transport Security
QUIC Stream
HTTP/3 Client
HTTP/3 Proxy
HTTP/TCP Server
CONNECT nf-producer.com
TCP
HTTP/2 Connection
HTTP/2 Stream
HTTP GET/PUT/POST/DELETE

image2.emf
Domaine name A

HTTP Server A1

HTTP Server A2

Domaine name B

HTTP Server B1

HTTP Server B2

Domaine name C

HTTP ClientHTTP Proxy

QUIC connections

Microsoft_Visio_2003-2010_Drawing.vsd
HTTP Client

HTTP Proxy

HTTP Server A1

HTTP Server A2

Domaine name A

Domaine name B

HTTP Server B1

HTTP Server B2

Domaine name C

QUIC connections

