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Abstract—The transition to 5G cellular networks will bring
disruptive change to both industry and society. Two key disruptive
innovations are (1) running the 5G core network on commodity
cloud infrastructure and (2) introducing 5G applications that
allow third parties to implement value-added services for end
users and businesses. While these changes will foster significant
innovation, they also open cellular networks—particularly net-
work cores—to new attack surfaces. This paper provides the first
security analysis of access control within the 5G core. We begin by
performing static analysis of a 5G core reference implementation
to derive least-privilege access patterns. We contrast the access
patterns with the OAuth policy in the 3GPP specifications to
identify two new sources of over-privilege, which allow a malicious
network function to interrupt user equipment connectivity and
extract subscriber information. We then use the access patterns
to derive a least-privilege OAuth policy and automatically in-
strument the 5G core reference implementation to enforce the
policy. By adopting our refined policy, 5G core implementations
will reduce the attack surface presented by opening the network
to new threats.

I. INTRODUCTION

The cellular industry is in the process of migrating to
5G. As with every new generation of cellular technology,
5G will bring disruptive change to both industry and society,
promising to connect everything from factories and agricul-
ture to vehicles and smart cities. However, 5G’s innovation
goes far beyond simply connecting devices: its main appeal
is providing services for these devices. To support a wide
variety of services and customers, the mobile core has been
fundamentally rearchitected to disaggregate traditional func-
tional entities (e.g., HSS, MME, PGW) into many different
Network Functions (NFs). Each NF is implemented as Cloud
Native Functions (CNFs) organized within a Service-based
Architecture (SBA) running on both private and public clouds.
Customers will run 5G applications that interact with the 5G
core, providing service-specific value-added services for end
users and businesses.

Existing academic literature on 5G security has been
limited. There have been several security studies perform-

ing protocol analysis [38], with a specific focus on the 5G
Authentication and Key Agreement (5G-AKA) [16], [28].
Beyond these core protocols, other studies examined how a
malicious Radio Access Network (RAN) could exploit the
5G system [21]. Researchers have also analyzed the standards
documents using natural language processing [25].

No prior work has considered the security of the 5G core.
Unlike the mobile core in prior generations, the 5G core
is designed to run on public infrastructure where perimeter
defenses such as firewalls provide limited protection. Further-
more, a key new feature is the introduction of 5G applications,
which allow third-parties to define and run NFs that interact
with the 5G core. Insufficient protection between NFs can
compromise 5G core functionality, including disclosure of
sensitive subscriber information and selective DoS. To combat
such attacks, 5G Americas [13] recommends deploying a Zero
Trust Architecture (ZTA) that includes the use of OAuth tokens
to authorize requests between NFs.

The 3GPP standards include optional specifications for
using OAuth tokens to authorize requests between NFs [6]. The
standards provide a machine-readable OAuth access control
policy as part of OpenAPI specification YAML files. 5G core
implementations use the OpenAPI specifications to automat-
ically generate the code for making and handling network
requests between NFs. Therefore, one might expect access
control between 5G core NFs to be a solved problem.

Studying OAuth in the 5G core, we make two observations.
First, a manual review of the access control policy by the
3GPP identified an over-privilege access control flaw that
unnecessarily exposes read and write access to sensitive sub-
scriber data, including cryptographic keys (3GPP TR 33.855
Key Issue #29) [5]. While this flaw has been fixed in 3GPP
Release 17 [4], an automated approach is likely to identify
additional policy flaws. Second, no existing open source 5G
core implementation includes any code for requesting or vali-
dating OAuth tokens. In fact, the OpenAPI generator tool for
Go (the language used by free5GC) does not even support the
OAuth Client Credentials type used by the 3GPP OpenAPI
specification.

In this paper, we define and instrument least-privilege
access control for requests between NFs in the 5G core.
We accomplish this goal by introducing two tools: 5GAC-
Analyzer and 5GAC-Instrumenter. 5GAC-Analyzer uses static
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program analysis of a 5G reference implementation1 to extract
access patterns that represent least-privilege. We use the access
patterns in two ways. First, we derive a least privilege policy
that optimizes usability by defining permissions at the service
granularity whenever possible. Second, we compare the access
patterns to the 3GPP defined policy, identifying two additional
sources of over-privilege not identified by the 3GPP’s manual
analysis. The newly identified policy flaws (a) provide an
additional attack vector to extract subscriber information, and
(b) allow interruption of User Equipment (UE) connectivity.

Next, we modify the 5G reference implementation to
enforce an OAuth policy. While we manually extended the
Network Repository Function (NRF) to respond to OAuth
token requests based on a given policy file, 5GAC-Instrumenter
automatically inserted code for 78 OAuth token requests and
64 validation checks into NFs. The OAuth token requests dou-
ble the number of network calls (and therefore time) required
to perform many operations within the core. However, we
experimentally demonstrate that these operations infrequently
impact UEs. In particular, the addition of OAuth checks has
a negligible impact on UE network throughput. Furthermore,
when compared to the baseline 3GPP access control policy, our
least-privilege policy has a negligible impact on performance
throughout the core.

We make the following contributions in this paper:

• We derive a least-privileged access control policy for
the 5G core. We perform program analysis to identify
NF interactions by using a 5G reference implemen-
tation. From these interactions, we derive an access
control policy that balances usability and security.

• We identify two previously unknown access control
flaws in the 3GPP policy. In addition to identifying
the same over-privilege previously reported in 3GPP
TR 33.855 Key Issue #29, our automated analysis
identified two additional access tokens definitions that
result in over-privilege. We are in the process of
disclosing these vulnerabilities to the GSMA.

• We automatically instrument a 5G core reference
implementation to enforce least-privilege. No open-
source 5G core implements access control between
NFs. The instrumentation is policy-agnostic, allowing
the use of the 3GPP security policy or our optimized
least-privileged policy.

We note that our approach is limited by the 5G core
functionality implemented in the reference implementation.
This paper considers version 3.0.7 of free5GC, which imple-
ments 3GPP Release 15. As discussed in Section IV, free5GC
includes incomplete stubs for some core functionality. This
functionality is not included in our least-privilege policy. As
the implementation matures, 5GAC-Analyzer can be re-run to
derive a more complete least-privilege policy. We will release
the source code of 5GAC-Analyzer and 5GAC-Instrumenter
to support these future efforts. Furthermore, we will attempt
to upstream both our OAuth enhancements to free5GC and
additions to the OpenAPI-generator so that future projects

1We use free5GC [1] as our reference implementation, which is the base
of the Open Networking Foundation (ONF)’s 5G mobile core SD-Core [51].
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Fig. 1: Example of different 5G slice configurations with
annotations describing 3GPP TR 33.855 Key Issue #29. The
UDR’s subscription data is more sensitive than the other data it
exposes. While only the UDM needs to access the subscription
data, the 3GPP policy allows all NFs to access it.

using the 3GPP OpenAPI specifications can define NFs with
OAuth checks.

The remainder of the paper proceeds as follows. Section II
provides background and motivation. Section III provides an
overview of our design. Section IV describes our policy anal-
ysis. Section V describes how we instrument the 5G reference
core with OAuth. Section VI details the discovered security
flaws. Section VII describes the performance impact of the
implementation. Section VIII discusses limitations. Section IX
overviews related work. Section X concludes.

II. BACKGROUND & MOTIVATION

5G Core Architecture: The 5G core makes many improve-
ments over the 4G/LTE core. Notably, 5G shifts away from
specialized hardware into a software-defined SBA. The SBA
defines functionality in the network core through a software
Application Programming Interface (API) over HTTP. Using
these exposed APIs, 3GPP standards define sets of NF to
NF interactions. In addition, the 3GPP standards allow some
flexibility in NF implementation; for example, developers can
implement NFs as stateful or stateless.

Each NF has a purpose and required functionality to
comply with the standards. The User Plane Function (UPF)
provides the interface between the UE and the Data Network
(DN), which the S-GW and P-GW performed in 4G. The
Access & Mobility Management Function (AMF) provides
registration, connection, and reachability management for a
UE, roughly equivalent to the MME in 4G. The Session
Management Function (SMF) allocates IP addresses to UEs
and handles session management, including tunneling to the
UPF. The SMF combines certain portions of the S-GW, P-GW,
and the MME in 4G. The Unified Data Repository Function
(UDR) is a centralized repository for subscriber, application,
exposure, and other data. The Unified Data Management
Function (UDM) manages data from the UDR and distributes
it to the corresponding NFs. 5G splits the HSS into the UDR
and UDM. Some NFs will have an equivalent function or two
in 4G, and some are new to 5G. For example, the NRF is new
to 5G and has no equivalent component in 4G.

5G operates in two distinct modes: 5G Non-Standalone
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(NSA) is a 5G RAN with a 4G core network, and 5G
Standalone (SA) is a 5G RAN and 5G core. We assume 5G
SA for the remainder of this paper. Network slicing is a key
enhancement in 5G and is only achievable in 5G SA [29].
Network slicing defines separate logical networks on the same
physical network. Network slicing allows distributed networks
that achieve specific properties such as low latency or ultra-
reliability. Slicing also enables business customers to create a
logical network isolated from other slices facilitated by CNFs.
Network core operators provision and configure slices based
on agreements between the business and operators. The most
common NFs for slices are the UPF, followed by the AMF
and SMF, then the UDR and UDM [12], [13], [29].

The 5G core network or a slice can deploy a 5G ap-
plication. For example, a network operator may provide an
additional video streaming service to all customers as a 5G
app. This app would have access to subscriber information and
can provide additional content to customers who pay more.
A sports stadium slice can deploy a 5G app to provide real-
time updates to consumers. This 5G app could reveal player
positions or additional features, such as AR/VR. These features
could be given to customers who provide their phone numbers
to the sports stadium and entirely run through a 5G slice. 5G
slices can manage all the data for these applications using the
UDR.

5G Slice Architecture: Figure 1 provides an example con-
figuration of a 5G core with multiple slices for different
business uses. Each slice can deploy its own NFs or use the
NFs exposed in the core network. Deploying NFs in the slice
enables fine-grained control, independence, and isolation from
other slices and the core network. Slices typically deploy a
UPF as deploying a UPF in specific geographic locations helps
to achieve low latency, enforce encryption standards, and avoid
user data leaving the slice [29].

Slice A in Figure 1 represents a typical design for an indus-
trial automation slice deployed at a single location. This slice
configuration enables robotics and surveillance of a factory by
deploying a UPF and SMF to handle network sessions. An
AMF may also be deployed if UE control signaling requires
the same isolation properties. However, most of the AMF’s
mobility functionality is unnecessary as the devices in the
factory are not moving large distances. Therefore, an AMF
deployment in an industrial automation slice may be more
applicable when the automation is highly mobile, such as in
outdoor farm equipment [29].

Slice B in Figure 1 shows a slice for a large-scale fleet
of vehicles, such as delivery trucks or drones. Cellular-based
Vehicle-to-Everything (V2X) use cases require Ultra-Reliable
Low-Latency Communication (URLLC). Due to the low-
latency requirements, NFs may be more prominently dis-
tributed than other slice types. Some NFs may be duplicated
on the network edge and in the core for redundancy and
load balancing. This slice will have similar requirements as
Slice A but with additional mobility. Therefore, it may include
a dedicated AMF. This slice will be ideal for low latency, high
availability, and mission-critical applications [12].

Access Control in the 5G core: The 3GPP has standardized
the use of OAuth 2.0 for access control between NFs in the 5G
core. However, the use of OAuth is defined as optional. OAuth

is necessary for robust access control in the core network,
especially when multiple tenants are involved. Assuming slices
agree to share data via the Security Edge Protection Proxy
(SEPP), the access control policy determines what NFs among
separate slices share which data. Additionally, slices may
request data from core NFs about other slices, breaking slice
isolation without a least-privileged access control policy.

Based on the 3GPP standards [6], OAuth enforcement
should operate as follows. When a consumer NF wants to call
an API exposed by a producer NF, it will first ask the NRF for
the access token needed for the API. The NRF will validate
that the requesting NF is who it says it is by verifying its
clientID. Each clientID is a Universally Unique Identifier
(UUID) generated by the NF during registration with the NRF.
The NRF validates each NF by checking its internal repository
of NFs for a matching clientID. The NRF decides if the
consumer NF should get the token, returning it if appropriate.
The client NF then sends the access token with the request
to the producer NF. When the producer NF receives the
request, it will check and validate that the access token has
the correct scope to access the API. If the validation succeeds,
the producer NF performs the API operation and returns the
appropriate result to the consumer NF.

3GPP TR 33.855 Key Issue #29: The 3GPP published a
technical report [5] describing security issues within the 5G
core SBA. It found that some data or operations in NF’s
exposed services are more sensitive than others. For example,
the UDR provides policy, exposure, and application data that
many NFs access. However, the UDR also includes sub-
scription data, which contains highly-sensitive data, including
cryptographic keys and primitives used for UE authentication.
Thus, only the UDM should access the subscription data.
The subscription data contains many other highly sensitive
fields related to 5G-AKA, Steering of Roaming (SoR), and
UE Parameter Update cryptographic information. Furthermore,
all cryptographic operations become meaningless with write
access to the subscription data.

Figure 1 shows two slices interacting with the same UDR in
the core network. An SMF in one network slice can access or
modify the core network’s subscription data in the UDR under
the 3GPP access control policy. Furthermore, if network slices
do not operate their own UDR, their highly sensitive data,
including cryptographic keys, are exposed to other slices. The
UDM Subscription Data Management service’s purpose is to
manage this sensitive data and only to provide it to NFs that
are allowed to retrieve it. There are two types of connections
between NFs in Figure 1. Connections 1 and 3 are allowed by
the OAuth policy; however, 2 and 4 should not happen but are
permitted by the policy. The SMF could be given subscription
information used by network slice B only, thus breaking the
isolation between slices.

3GPP Release 17 fixes this specific flaw by introducing
additional access tokens on the different data types in the
UDR. However, the interaction between NFs in the 5G core
is complex. As demonstrated by 3GPP TR 33.855 Key Issue
#29, over-privilege is a real problem. This paper seeks to
methodologically study over-privilege for the 5G core to
recommend a refined OAuth policy to the 3GPP.

Threat model and Assumptions: We assume that each NF
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Fig. 2: Overview of our approach consisting of 5GAC-Analyzer for policy analysis and generation and 5GAC-Instrumenter for
instrumenting the 5G core reference implementation to enforce OAuth.

requires different levels of access to different data types in the
5G core. For example, the UDM needs to access all data from
the UDR, but other NFs should not access subscription data.
We consider two types of adversaries that have compromised
NFs. First, we consider adversaries that have compromised the
container or virtual machine that runs an NF by exploiting a
vulnerability in that NF. Second, we consider a malevolent or
curious business customer that may operate its slice in a way
that harms the core network. We assume that every instance
of an NF is on a different physical network than every other
NF, and the 5G core may be distributed across many different
locations. This distributed architecture of the 5G core could
be typical with multiple network slices, each managing its NF
and its own UE’s. When an NF is compromised, we assume
it can create arbitrary requests to any other NF with exposed
API interfaces over HTTP. Additionally, we assume that the
HTTP interface is encrypted with SSL/TLS, which performs
mutual authentication between all NFs.

We assume that the source code for free5GC or other 5G
cores is easily obtainable by an adversary, and they can run
their instance of a 5G core or slice. The maintainers of 5G
core software implementations do not intend for the source
code to be used for malicious purposes. We also assume that
the optional OAuth 2.0 is enforced in the core as specified in
the 5G standards. Free5GC does not enforce optional OAuth
2.0 as specified in the standards, but we instrument the code to
add the required checks. Additionally, we consider the cloud
provider, physical hardware, UE, and RAN as part of the
trusted computing base.

III. OVERVIEW

3GPP TR 33.855 Key Issue #29 demonstrated that the
3GPP OAuth policy contains exploitable over-privilege. The
goals of this paper are to (a) identify other sources of over-
privilege in the 3GPP OAuth policy, and (b) help 5G core
implementations achieve least privilege between NFs. Our
key insight is identifying functional needs using program
analysis on a reference 5G core. However, doing so requires
overcoming the following research challenges:

• The static program analysis must be domain-informed.
The analysis must map the semantics of 5G NF
interfaces to the code locations for both making and
handling requests.

• Access token granularity must balance maintainability
and security. Adding more granular access tokens
increases maintenance overhead for the standards and
the core implementation. The policy needs to balance
this concern with security to find an optimal fit.

• No existing open-source 5G core implements OAuth
access control. Evaluating our proposed policy re-
quires instrumenting a 5G core implementation to
enforce OAuth.

We address the first challenge using the 3GPP specifica-
tions to identify domain-specific APIs and their corresponding
code locations. 3GPP provides OpenAPI specification YAML
files that are used to auto-generate code that establishes and
handles RESTful HTTP connections between the NFs. In many
cases, names within the OpenAPI files correspond to names
of functions in the code. However, names are not always
defined, and names are not always unique. We overcome these
complications by modeling default name construction patterns
in the OpenAPI-Generator and extracting package context from
source code files.

The static analysis produces a set of access patterns that
define which NFs need to call which entry points in which
services. We use the access patterns in two ways. First, we
compare the access patterns to the 3GPP policy and identify
two previously unknown over-privilege issues. As described
in Section VI, these flaws expose some subscriber information
and enable UE DoS. Second, we use the access patterns to
propose a new least-privilege policy. In doing so, we address
the second challenge by designing an algorithm that optimizes
access token permissions at the granularity of services within
NFs. If more granularity is needed, we cluster entry points
within those services to minimize the number of permissions.
Since the 3GPP policy currently defines permissions at the
granularity of services, the 3GPP policy only requires minimal
changes to adopt our suggestions.

Finally, we overcome the third challenge by automati-
cally instrumenting the free5GC codebase with OAuth token
requests and validation in all NFs. While it is relatively
straightforward to add logic to the NRF to respond to OAuth
token requests, many changes are required throughout the code
to request, send, and validate the tokens. Access token requests
are inserted after all relevant error checking and included
transparently in HTTP headers for each proxy. Each entry point
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in each service in each NF must validate access tokens upon
receiving requests.

Figure 2 provides a high-level overview of our approach,
which consists of two tools. The 5GAC-Analyzer tool con-
sumes the 5G core reference implementation and the 3GPP
OpenAPI specification files. It uses call graph analysis to
identify which NFs access which service entry points. 5GAC-
Analyzer then uses the access patterns to both (a) provide a set
of over-privileged policy flaws for a human analyst, and (b) de-
rive a least-privilege OAuth policy. 5GAC-Instrumenter takes
a 5G core reference implementation and the 3GPP OpenAPI
specification files and produces a modified implementation
that enforces the OAuth policy. 5GAC-Instrumenter is policy-
agnostic and can consume both the 3GPP OAuth policy and
the least-privilege policy created by 5GAC-Analyzer.

Our current implementation uses free5GC [1] as the 5G
core reference implementation. The free5GC implementation
is primarily written in Go; hence, our analysis is built on
top of the ast package in the Go standard library. However,
the analysis algorithm is lightweight and general enough
to be ported to other languages. One advantage of 5GAC-
Instrumenter is that it retains all whitespace and comments
when it instruments code. Hence, we can automatically pro-
duce patches for free5GC, which we plan to contribute as pull
requests to the free5GC Github project.

IV. 5GAC-ANALYZER

5GAC-Analyzer performs three tasks: (1) identify access
patterns between NFs, (2) identify over-privilege in the 3GPP
policy, and (3) derive an OAuth policy that captures least
privilege between NFs and entry points to services. This
section describes how 5GAC-Analyzer extracts access patterns
using static analysis and then uses them to accomplish the latter
two tasks. Our access control model considers NFs as subjects
and individual entry points as objects.

Let N be the set of all NFs, S be the set of all services,
and E be the set of all entry points. Each NF n ∈ N is a set
of services S ⊆ S. Each service s ∈ S is a set of entry points
E ⊆ E . Furthermore, we assume a set of permissions P is text
strings used to define access control rules.

Definition 1 (Access Pattern). The set of all possible access
patterns A is a set of pairs. Let n ∈ N and e ∈ E be an NF
and an entry point respectively. An access pattern a ∈ A is a
pair (n, e) empirically derived through program analysis.

Definition 2 (Access Rule). The set of all possible access rules
R is a set of triples. Let n ∈ N , e ∈ E , and p ∈ P be an NF,
an entry point, and a permission text string. An access rule
r ∈ R is a triple (n, e, p). A policy Γ is a set of access rules.

Definition 3 (Least Privilege Policy). Let a policy Γ be a set
of access rules, and A be a set of access patterns. Γ is least
privilege with respect to A if ∀(n, e, p) ∈ Γ, (n, e) ∈ A (secu-
rity requirement) and ∀(n, e) ∈ A, (n, e, ) ∈ Γ (functionality
requirement), where represents any permission.

The remainder of this section describes our approach for
extracting a set of access patterns A from a 5G core implemen-
tation and testing if the 3GPP provided policy Γ3GPP is least
privilege. As we discuss in Section VI, 5GAC-Analyzer finds

Γ3GPP is not least privilege, leading to several vulnerabilities.
Therefore, 5GAC-Analyzer generates a least privilege policy
that provides a trade-off between policy usability and security.
We perform our analysis on free5GC, which is written in
Go. However, the approach itself is more generic and can be
applied to other 5G core implementations such as Open5GS,
which is written in C.

A. Identifying Service Entry Points

To derive the access patterns, 5GAC-Analyzer must deter-
mine the location of NFs, services, and service entry points
within the code. Fortunately, the code location of NFs and
services are relatively straightforward to identify. For example,
free5GC and Open5GS use source code directory structure to
organize code by NF and service. Entry points are function
callbacks within those files.

Service entry points implement the RESTful APIs defined
by the 3GPP specifications. 5GAC-Analyzer uses OpenAPI
specifications provided by 3GPP to bridge the semantic gap be-
tween the APIs and the function callbacks. The specifications
provide both the API definition and callback function name.
Both free5GC and Open5GS use the OpenAPI-Generator [26]
tool to create code from the 3GPP specifications. OpenAPI-
Generator uses the operationId field in the OpenAPI spec-
ification to name the function in the source code.

Unfortunately, the 3GPP OpenAPI specification has two
limitations: (1) the operationId is not defined for every API,
and (2) entry points will use the same function names when
the operationId is the same. Figure 3 shows two separate
proxy functions. OpenAPI-Generator creates these functions
with the same function name because they have the same o-
perationId in the 3GPP specifications.

5GAC-Analyzer generates a call graph from the AST by
recursively locating all nodes that call functions starting from
the program start. Every NF starts a set of services that define
entry points. 5GAC-Analyzer traverses the call graph of each
NF to identify each service’s startup routine. Next, 5GAC-
Analyzer extracts the routing table, which defines each entry
point during the service startup routine. However, these entry
points need to be mapped to the 3GPP specifications.

5GAC-Analyzer assigns the function to the corresponding
API when its name matches the operationId from the spec-
ifications. To avoid name collisions, 5GAC-Analyzer analyzes
each service independently. When the 3GPP specification does
not define an operationId, 5GAC-Analyzer falls back to
the auto-generated name created by OpenAPI-Generator. The
fallback name consists of the HTTP request type and API path
to the API. This strategy successfully identifies all callbacks
in the free5GC code-base. 5GAC-Analyzer identified 64 entry
points in free5GC version 3.0.7. Manual verification of these
entry points confirmed the mapping was correct in all cases.

B. Extracting access patterns

A key part of 5GAC-Analyzer is extracting access patterns:
i.e., which NFs call which entry points. A proxy function is a
function in the code that has the sole purpose of performing an
HTTP request to an entry point in another NF. A naı̈ve solution
is to assume that all of the proxy functions defined in the code-
base for a NF are used by that NF. However, we found that
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1 func Get(...) (...) {
2 var localVarHTTPMethod = strings.ToUpper("Get")
3 ...
4 localVarPath := a.client.cfg.BasePath() +

"/{ueId}/registrations/amf-3gpp-access"
5 ...
6

7 r, err := openapi.PrepareRequest(...)
8 ...
9 localVarHttpResponse, err := openapi.CallAPI(r, ...)

10

1 func Get(...) (...) {
2 var localVarHTTPMethod = strings.ToUpper("Get")
3 ...
4 localVarPath := a.client.cfg.BasePath() + "/{supi}"
5 ...
6

7 r, err := openapi.PrepareRequest(...)
8 ...
9 localVarHttpResponse, err := openapi.CallAPI(r, ...)

10 }
11

Fig. 3: Function name collision to call APIs in two different services. Both services expose different REST APIs and the function
to call them has the same name. The operationId for both APIs is “Get” in the 3GPP standards.

Algorithm 1 Algorithm to find over-permissive access rules
based on a policy Γ and set of access patterns A

1: procedure FINDOVERPRIVILEGE(Γ, A)
2: O := ∅
3: for (n, e, p) ∈ Γ do
4: if (n, e) ̸∈ A then
5: O.append(n, e, p)
6: end if
7: end for
8: return O
9: end procedure

OpenAPI-generator includes definitions of all proxy functions,
regardless of whether or not they are used. Therefore, a call
graph is required to determine the access patterns.

5GAC-Analyzer constructs a call graph from the main
program entry point of each NF’s program. Similar to the entry
point function discovery, the call graph construction resolves
links to the entry point call back methods by resolving links
in the routing table. 5GAC-Analyzer then traverses the call
graph to identify all function calls that match the possible
operationId values in the specifications. Again, 5GAC-
Analyzer must account for the two limitations of the Ope-
nAPI specification: missing operationId values and name
collisions. Missing operationId values are handled similar
to entry point discovery. However, name collisions require a
different approach.

When identifying the proxy functions, 5GAC-Analyzer
could assume function names were unique for the service under
analysis. However, the access pattern extraction must resolve
which service the function name belongs to. To perform this
resolution, 5GAC-Analyzer analyzes all import statements for
the file. Each proxy function invocation references a package
from the import statements. We extract this package reference
from each proxy call to resolve which service the proxy
function belongs to.

C. Least-privileged 5G core access control

5GAC-Analyzer uses the access patterns to achieve its
primary goals: (1) check an existing access control policy
to determine if it is least privileged, and (2) derive a least-
privileged access control policy while optimizing for both
security and maintainability.

Algorithm 2 Algorithm to create a least privilege policy for
a set of services S based on a set of access patterns A

1: procedure CALCULATEPOLICY(S, A)
2: Γ := ∅
3: for s ∈ S do
4: G := ∅ ▷ Set of 2E × 2N pairs
5: for e ∈ s do
6: C := {n|(n, e) ∈ A} ▷ All n that call e
7: found := false
8: for (E,N) ∈ G do
9: if N = C then

10: E.append(e) ▷ Also updates E in G
11: found := true
12: continue
13: end if
14: end for
15: if found = false then
16: G.append({e}, C)
17: end if
18: end for
19: for (E,N) ∈ G do
20: p := CREATEPERMISSIONNAME(s, E)
21: for e ∈ E do
22: for n ∈ N do
23: Γ.append(n, e, p)
24: end for
25: end for
26: end for
27: end for
28: return Γ
29: end procedure

Finding Over-Permissive Policy: Algorithm 1 determines the
over privilege in an access control policy Γ with respect to
an empirically derived access pattern A. It iterates through Γ
checking each policy tuple for a matching pattern pair in A. If
a rule allowing a NF to call an entry point exists in the access
control policy and not the access patterns, then permission p is
too permissive. The corresponding access rule is added to O,
which is returned by the algorithm. We discuss policy over-
privilege discoveries in Section VI.

Generating a Least Privilege Policy: 5GAC-Analyzer derives
a least privilege policy based on a set of services S and a
set of access patterns A. Recall that each s ∈ S is a set of
entry points. Conceptually, 5GAC-Analyzer seeks to achieve
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Service

NF Automatic
Manual

Entry Point Foo

Token Validation

...
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NRF

Authorization
Server

Proxy Bar

AC Policy

Fig. 4: 5GAC-Instrumenter changes the system behavior of the
5G core by automatically adding token requests and validation
to each NF. The authorization server is a one-time manual
effort and consumes an access control policy.

least privilege without unusable permission bloat (e.g., one
permission per entry point). The existing 3GPP policy defines a
permission to access each service. Therefore, 5GAC-Analyzer
uses service-level permissions whenever possible. Doing so
minimizes the differences between the 3GPP and the least
privileged policies.

Let Es be the set of entry points for service s. If all
e ∈ Es have the same set of accessing NFs in A, then
5GAC-Analyzer defines the permission at the granularity of
the service. Otherwise, we cluster each e by NF callers and
create new permissions based on the set of callers for each s.
This strategy is intuitive. The 3GPP policy already uses service
names for permission strings. For finer-grained names, 5GAC-
Analyzer creates names based on the prefixes of the entry point
names.

Algorithm 2 creates the least privilege policy based on a
set of services S and access patterns A. It starts with an empty
policy Γ and builds it up by going through every service s ∈ S,
filling in the structure. In lines 5-18, we create groups of entry
points G, which is a tuple of a set of entry points and a NF
(E,N). In lines 19-26, we create a permission for each group
of entry points which ensures a new permission for each access
pattern. The result of the algorithm is an access control policy
that is consumed by 5GAC-Instrumenter to instrument the 5G
core.

V. 5GAC-INSTRUMENTER

The 3GPP specifies that when authorization between NFs
is needed, the 5G core should use OAuth 2.0 with Client
Credentials, which is a machine-to-machine authorization type.
Enforcement of OAuth with Client Credentials requires in-
strumentation in three ways. (1) In every proxy, the NF must
request an OAuth access token from the NRF. (2) The NRF
needs to determine the identity of the NF and whether it is
allowed the access token based on the access control policy. If
the access control policy allows this interaction, then the NRF
signs the access token and returns it. (3) Every entry point
must validate the access token and check its permissions.

5GAC-Instrumenter instruments NFs in free5GC to re-
quest, send, and validate OAuth tokens. It inserts access token
requests to all proxies in free5GC and token validation at
all entry points. When doing so, 5GAC-Instrumenter can use
either access control policy from 5GAC-Analyzer or the 3GPP
policy. We also manually added an authorization server into
the NRF, including the logic to handle OAuth token requests.

A. Access Control Architecture

Figure 4 details our authorization architecture for enforcing
OAuth in the 5G core. We now discuss the three key compo-
nents of the architecture.

Token Request: Each time an NF wants to call an entry point
in another NF, it requests a short-lived access token for that
entry point from the authorization server. That token is then
included in the subsequent call. Alternatively, the authorization
could assign a validity period and allow the NF to cache and
reuse the access token. While caching access tokens reduces
the number of network connections required to perform an
operation, it increases the attack surface, as tokens may leak
during their validity period. We show in Section VII that
requesting a new token for each call does not significantly
impact UE network performance.

Authorization Server: The 3GPP specifications define the
NRF as the authorization server. The authorization server
determines which access tokens are granted to which NFs.
When a consumer NF initiates an access token request, it
includes a client ID, which is a UUID that the NF gave to
the NRF instance when it initially registered to the NRF. The
authorization server uses the NF instance ID and maps this to
an internal NF repository, validating the NF in the process. It
then checks if the access control policy allows the NF to access
the entry point. The authorization server creates an access
token, embedding its identity, the consumer NF’s identity, the
producer NF’s identity, access token scope, and expiry time.
The 3GPP standards describe either a pre-shared secret key
between the NRF and all NFs or TLS certificates to sign and
verify access tokens. However, they do not standardize any key
agreement protocol for signing and verifying the access tokens,
instead leaving it up to the implementations. After signing the
access token, the authorization server returns the generated
access token to the consumer NF. We manually implement the
authorization server in the free5GC NRF, which is a one-time
effort.

Cross-slice access control policies are supported between
NFs of separate slices. Each slice’s NRF manages the ac-
cess token’s requests. 5GAC-Instrumenter determines the NRF
location dynamically based on each NF’s configuration. The
SEPP acts as a firewall between slices and manages authenti-
cation of NFs. However, authorization to specific data types is
outside the scope of the SEPP and is managed by OAuth even
between slices.

Token Validation: Each entry point performs token validation
to verifies the caller has sufficient permissions to perform the
intended operation. When the entry point receives a request,
it validates the access token by checking its signature is valid,
that it is not expired, and that it trusts the signature. It also
checks that it trusts the consumer and producer NF identities.
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1 func AMFStatusChangeSubscribe(...) (...) {
2 var localVarHttpMethod = strings.ToUpper("Post")
3

4 localVarPath := a.client.cfg.BasePath() + "/
subscriptions"

5

6 ....
7 + scopes := []string{"namf-comm"}
8 + tokenUrl := fmt.Sprintf("%v/oauth2/token"},
9 + authorization_server)

10 + conf := &clientcredentials.Config{Scopes: scopes,
11 + TokenURL: tokenUrl, ...}
12 + token := conf.Token(...)
13

14 + r := openapi.PrepareRequest(localVarPath, token, ...)
15 - r := openapi.PrepareRequest(localVarPath, ...)
16 ...
17 localVarHttpResponse, err := openapi.CallAPI(r, ...)
18

Fig. 5: Example client-side proxy function that calls the 5G
core API listed in Figure 6. The code additions instrumented
by 5GAC-Instrumenter are shown in green.

1 var routes = Routes{
2 ...
3 {
4 "AMFStatusChangeSubscribe",
5 strings.ToUpper("Post"),
6 "/subscriptions",
7 HTTPAMFStatusChangeSubscribe,
8 },
9 ...

10

11

12 func HTTPAMFStatusChangeSubscribe}(...) {
13 + scopes := []string{"namf-comm"}
14 + _, oauth_err := openapi.CheckOAuth(..., scopes)
15 + if oauth_err != nil {
16 + c.JSON(http.StatusUnauthorized, ...)
17 + return
18 + }
19

20 var subscriptionData models.SubscriptionData
21

22 requestBody, err := c.GetRawData()
23

24 ...
25 }
26

Fig. 6: Entry point that handles the 5G core API called from
Figure 5.

Finally, the entry point checks the scope of the access token is
the scope of the entry point. After all validation, the entry point
performs its operation and returns results to the requesting NF.

B. Instrumenting Token Requests

The token request instrumentation must address the follow-
ing criteria: (1) when the authorization server changes location,
access token requests should query the correct authorization
server; (2) access token requests must be inserted in the
proxy’s function before the HTTP request; and (3) access
token requests should be inserted after most or all error
checking to eliminate unnecessary requests to the authorization
server. We note that unrelated errors, such as missing required
parameters by the proxy caller, will be rejected by the entry
point regardless of permission. In this case, the 5G core
must not unnecessarily query the authorization server when a

proxy call fails. 5GAC-Instrumenter minimizes the additional
network overhead by only contacting the authorization server
when all other error checking is complete.

Figure 5 shows an example proxy definition that includes
our token request instrumentation on lines 7–14. The sco-
pe defines the permission that the NF will request from the
authorization server, the TokenURL defines the location of the
authorization server, and conf.Token is the function call that
initiates the token request. Finally, the proxy includes the token
in the HTTP header to call the API.

5GAC-Instrumenter inserts token requests immediately be-
fore the proxy’s HTTP request. Proxies are identified to
instrument token requests in the 5G core as described in
Section IV. Proxies must insert each token directly into the
HTTP request sent to the entry point. 5GAC-Instrumenter
modifies the content of the HTTP request to include the access
token in all proxy functions transparently.

Finally, the location of the authorization server may change
and scale to changes in network load dynamically. Each NF
maintains a configuration structure for the IP address of the
authorization server. 5GAC-Instrumenter examines each NF’s
AST to extract the configuration structure. Once identified,
5GAC-Instrumenter inserts the NRF IP address variable and
the NF instance ID variable into all token requests. We
reference the NRF IP address as the base location to request
the access token for an HTTP request, adding the constant
“/oauth2/token”.

C. Instrumenting Token Validation

5GAC-Instrumenter instruments token validation at each
entry point following two rules: (1) token validation and
requests must agree on the access control policy and (2) to
minimize additional code, we instrument most access control
checks in a shared file between all entry points. Therefore,
access token validation instrumentation only varies in a single
function call that specifies the intended permission to minimize
code overhead and maintenance.

Figure 6 shows an entry point definition with token vali-
dation instrumented. The route definition identifies HTTPAM-
FStatusChangeSubscribe as the entry point for the POST
/subscriptions API. Line 13 specifies the valid scopes for
the entry point based on the access control policy during
instrumentation. On line 14, the access token is validated
according to the expected permission. An HTTP Unauthorized
response is returned if this access token is invalid or does not
contain the expected permission. If the entry point successfully
validates the access token, it continues normally.

5GAC-Instrumenter must decide the access control policy
and instrument token validation, the authorization server, and
token requests with the same policy. If there is a mismatch
in the access control policy, token validation may reject the
NF when it should not. 5GAC-Instrumenter instruments token
requests and validation simultaneously, ensuring the access
control policy is consistent.

Token validation is designed to be as generic as possible to
ensure it is compatible with all entry points. Every entry point
must validate the access token’s signature, and the entry point
must accept one or more of the token’s scope. The signature
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validation can be shared for every entry point, however, the
scope validation must change for each entry point since it may
accept different scopes. Additionally, entry points may enforce
multiple required scopes, each requiring validation. Token
signature validation occurs by verifying an HMAC with a
shared key from the NRF and all NFs. For our implementation,
the secret key is a hardcoded key that we pre-define. We
discuss the key agreement protocol in Section VIII.

5GAC-Instrumenter supports enforcing multiple scopes
within the access control policy for an entry point. Each scope
needs to be validated independently of other scopes in this
case. The scopes are an array of strings, with each element
in the array is validated for the entry point. When all scopes
in the access token are validated, the entry point continues
normal execution.

D. Enhancing Future Projects

OpenAPI-Generator supports generating code for an Ope-
nAPI specification but lacks OAuth generation for many
languages. We have created a set of changes to OpenAPI-
Generator that generates OAuth token requests and validation
for all future projects in Go. However, improving OAuth gen-
eration in OpenAPI-Generator will not fix free5GC’s OAuth
enforcement as regenerating the code creates many merge con-
flicts. We intend to help all future use of OpenAPI-Generator
by creating a pull request to add in OAuth generation.

5GAC-Instrumenter can re-instrument the same code base
multiple times, enforcing a new access control policy. When
the 3GPP standards change and new functionality is added
into free5GC, 5GAC-Instrumenter can enforce a new access
control policy. Even when free5GC is already instrumented
with additional OAuth, 5GAC-Instrumenter detects this and
only adjusts the code locations to change the policy.

VI. 3GPP POLICY FLAWS

This section describes the policy flaws we discovered in the
3GPP access control policy and how our new policy addresses
them. We describe the possible attacks due to the access control
policy being over-privileged. The flaws were discovered in
3GPP Release 15 and have not been fixed in 3GPP Release
17 unless explicitly stated. We have disclosed our findings to
the GSMA and have not received a response confirming our
findings yet.

A. Experimental Setup

We ran our experiments on a VM with an Intel Xeon E5-
2620 @ 2.4 GHz and ten vCPUs and 60 GBs RAM running
Ubuntu 20.04 on Linux kernel 5.4. We ran 5GAC-Analyzer
on 3GPP Release v15.2.0, which contains 78 files defining the
access control policy. Notably, this version is used by free5GC
to generate code, which is why we chose it. We obtained
the policy files from 3gpp.org, which is the 3GPP working
area. 5GAC-Analyzer only uses policy files defining access
control policy and additional structures for NFs present in
free5GC. Free5GC does not implement every NF standardized
in 3GPP Release 15, which we discuss further in Section VIII.
5GAC-Analyzer filters out all unused policy files in free5GC,
leaving a total of 38 policy files. 5GAC-Analyzer and 5GAC-
Instrumenter completed execution in 1.56 seconds and 1.78
seconds, respectively.

1 openapi: 3.0.0
2 info:
3 version: 1.0.8
4 title: Namf_Communication
5 description: |
6 AMF Communication Service
7 © 2022, 3GPP Organizational Partners (ARIB, ATIS, CCSA,

ETSI, TSDSI, TTA, TTC).
8 All rights reserved.
9 security:

10 - {}
11 - oAuth2ClientCredentials:
12 - namf-comm
13 externalDocs:
14 ...
15 servers:
16 - url: ’{apiRoot}/namf-comm/v1’
17 ...
18 paths:
19 /ue-contexts/{ueContextId}: ...
20 /ue-contexts/{ueContextId}/release: ...
21 /ue-contexts/{ueContextId}/assign-ebi: ...
22 ...
23

Fig. 7: Example OAuth policy in the AMF Communication
service [6]. Line 10 indicates that an OAuth token is optional
for all endpoints in the service [3].

B. Newly Discovered Policy Flaws

When running 5GAC-Analyzer on free5GC, we discovered
two additional flaws in the access control policy. In total,
5GAC-Analyzer found 3 out of 13 access tokens in free5GC
to be over-privileged. One of these findings 5GAC-Analyzer
independently re-discovers the example described in 3GPP TR
33.855 Key Issue #29, which was discussed Section II. Note
that free5GC does not implement every NF in 3GPP Release
15, which limits our analysis. We expand on this limitation in
Section VIII.

Finding 1 (Negated OAuth Policy): The 3GPP policy in-
cludes null access rules for each entry point. While the 3GPP
specification states that OAuth is optional, an implementation
enforcing OAuth will interpret the null access rules as allowing
all callers. Hence, these rules negate the OAuth policy entirely.

Figure 7 shows an example service’s YAML security
definition. In an OpenAPI security definition, the empty
braces on line 10 means that OAuth is optional. The security
requirements object in OpenAPI accepts a list of security
requirements, and only one list item needs to be met for
the request to be allowed. Therefore, even though additional
OAuth requirements exist on an API on lines 11–12, all
rules following an empty brace are negated. Note that line
10 defines the security requirements for the entire service. If
the policy defines security requirements for individual APIs,
the requirements for the API override the global requirement.
However, we found that the 3GPP specification uses empty
braces for all security requirements, both global and per-API.

We believe this flaw results from a misunderstanding of
the empty braces feature in OpenAPI. The OpenAPI speci-
fications [3] give an example of optional policy using empty
braces. However, we think optional enforcement is the intended
purpose in the 3GPP specifications. Given the current policy
specification, 5G core implementations that wish to enforce
OAuth need to manually remove all of the empty braces, which
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Fig. 8: Only the AMF should be allowed to perform an AMF
handover. However, the PCF and SMF are also allowed under
the 3GPP access control policy. This can cause an insecure
AMF handover which may switch UE’s AMF to another slice.
The only information needed to perform this operation is a
UE’s SUPI.

is an error prone process.

Finding 2 (AMF Re-Allocation): UE handover APIs within
the namf-comm service are exposed to the SMF and PCF
despite being AMF specific. The AMF directly connects to
the RAN and the UE to provide control-plane messages to
both. The AMF handles initial authentication with the core
and ensures the UE is always reachable. NFs can be scaled
up and down at any time depending on network conditions
or specific requirements from slices. Additionally, when a UE
moves geographically to a new RAN, it may make a certain
AMF more suitable to serve a UE. In this scenario, an AMF
handover will occur in the core network. An AMF handover
is similar but not identical to when a handover occurs in the
RAN. The AMF serving the UE is the only entity that should
initiate the handover to another AMF.

With current policy, an SMF or Policy Control Function
(PCF) may also initiate this handover. This over privilege can
be exploited by malicious slices. Figure 8 shows how two
separate slices can exploit the permissive access control policy.
Previous work [21] has studied handover flaws that occur in
the RAN, but they did not look at how an NF handover in
the core may occur by an access control policy flaw. Slice A,
which hosts an SMF, can access the core network’s AMF to
request a handover for a UE. Slice A can initiate an AMF
handover to an AMF in another slice if Slice A can retrieve a
UE identifier of any UE in the core network. Depending on the
characteristics of the slices available, Slice A may move the
target UE to an AMF under the attacker’s control to eavesdrop
or deny service.

Figure 9 shows the network connections for an attack
exploiting this policy flaw. The operator AMF is one that the
core normally runs, whereas the malicious AMF is one that
an attacker will stand up on a separate slice of which they
have control. Initially, in steps 1–3, the victim UE will begin
normal operation with the core to authenticate and connect
to the Internet. In step 4, a UE can make phone calls and
connect to the Internet normally. Sometime later, either the
PCF or SMF will launch one of two attacks, shown in steps
5a and 5b, respectively.

RANUE
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1. UE Registration Request

Operator
AMF

Malicious
AMF SMF/PCF

2. Initial UE Message

3. 5G-AKA Success

4. Begin Internet Traffic

5b. UE Context Transfer, skip integrity check
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Fig. 9: The AMF Re-Allocation attack allows the SMF or PCF
to initiate an AMF switch for a UE. The attacker may switch
the UE to a new slice that the attacker controls, causing DoS
or on-path attacks.

The attacker aims to take a victim UE connected to the
core network offline for the first attack. As shown in step
5a, the attack has the PCF or SMF from one slice send a
malicious request to the AMF on another slice to release any
UE context. Releasing a UE context should only occur after an
AMF handover procedure is successful, and the initial AMF
is to delete data on the transferred UE. However, releasing UE
context is allowed by the PCF and SMF in the 3GPP access
control policy at any time. If the UE context release request
succeeds, shown in step 6a, then DoS will occur for that UE,
shown in step 7a. The UE will try to keep communicating with
the AMF, but the AMF will not have enough information to
serve the UE. At this point, the core network will need to
initialize the UE context causing intermittent connectivity in
the meantime.

The second attack is similar to the first and starts in step
5b. Instead of requesting a UE context release, a rogue PCF or
SMF can instead request a UE context transfer which begins
an AMF handover procedure, shown in step 5b. If the request
reason is specified as MOBI REG UE VALIDATEED, then
the AMF shall not perform an integrity check on the request,
allowing the attack to proceed [7]. When the request succeeds
in step 6b, the malicious AMF needs to perform a 5G-AKA
with the UE. If 5G-AKA succeeds, the malicious AMF can
perform an on-path attack on the UE’s Internet traffic shown
in step 10. If any failure occurs after step 6b is successful,
DoS for the UE occurs.

Finding 3 (Subscription Data Management Exposure):
APIs handling subscriber data in nudm-sdm are exposed
to the SMF and AMF. We found an issue similar to 3GPP
TR 33.855 Key Issue #29 in the “nudm-sdm” service. This
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service’s only purpose is to read the UE subscription data
from the UDR and provide portions of it to consumer NFs.
the nudm-sdm service does not achieve its designed purpose
without a least-privileged policy. The access control policy
for this service allows any of the consumer NFs to read any
of the exposed UE’s subscription data, however cryptographic
information is not exposed. For example, the endpoint POST
/{supi}/am-data exposes access and mobility data intended
for the internal operation of the AMF. However, the SMF
also has access to this endpoint and can retrieve information.
Additionally, the SMF can delete a subscription, which will
cause instability in the AMF or another NF that utilizes this
service’s subscriptions. The SMF can create a subscription to
data it should not access in the nudm-sdm service, causing a
potential privacy violation. 5GAC-Analyzer determined that
the SMF only needs to access data exposed by the GET
/{supi}/sm-data endpoint.

To validate that this attack works, we set up 5GAC-
Instrumenter to instrument the 3GPP policy. Then, we request
the nudm-sdm access token from the SMF and query the
POST /{supi}/am-data API, which should not be allowed. We
confirmed that we obtained valid data.

C. Updated Access Tokens

We propose six new access tokens to address the overpriv-
ileged policy. Table I shows the proposed tokens. These six
access tokens prevent the consumer NF from accessing every
API in the service and limit them to only the APIs described
in the table. The first changes in the access control policy
relate to namf-comm and Finding 2. Three new access tokens
separate the exposed APIs into NF-specific groups, negating
the scenarios discussed in Section VI-B. These tokens are
shown in rows 2-4 of Table I.

The next changes are in the nudm-sdm service, exposed
by the UDM. This service consumes the subscription data
from the UDR and provides other NFs with only what they
need. Three new tokens prevent consumer NFs from receiving
more data than they require. These tokens are described in
rows 5-7 of Table I. Finally, the changes in the nudr-dr
service were discovered independently by 5GAC-Analyzer, so
we include them in our findings. However, changes to the
access control policy for nudr-dr were implemented in 3GPP
Release 17 [4].

VII. PERFORMANCE EVALUATION

This section evaluates the performance of free5GC before
and after 5GAC-Instrumenter modifies the code base. Specifi-
cally, we answer the following questions:

Q1 How much additional latency is there in the core
network by adding additional access control checks?

Q2 How much overhead is introduced by changing the
access control policy?

Q3 How does OAuth in the core affect individual UE’s?

A. Experimental Setup

We ran our experiments on a VM with an Intel Xeon E5-
2620 @ 2.4 GHz and ten vCPUs and 60 GBs RAM running

Ubuntu 20.04 on Linux kernel 5.4. We evaluated free5GC
under three different configurations.

• free5GC: The default, unmodified free5GC 3.0.7
available on GitHub. This configuration does not
enforce any OAuth access control between the core
functions.

• free5GC with OAuth: The free5GC configuration
with code added for OAuth. This configuration uses
the default 3GPP Release 15 access control policy.

• free5GC with Improved OAuth: The free5GC with
OAuth configuration but enforcing our least-privilege
policy (Table I).

We used free5GC v3.0.7 run on Docker. We installed the
gtp5g v0.5.4 Linux kernel module required by the free5GC
UPF, which enables the network stack for a UE. For gNodeB
and UE simulation, we used UERANSIM 3.2.6. We used iPerf
3.7 to measure throughput for the UE between the docker
container for UERANSIM and the host machine over the
network interface created by the UPF [2].

B. Overhead in the Core

To evaluate the performance impact on the core network,
we simulated registering 210 UEs. Registration involves the
5G-AKA process, PDU Session Establishment, UPF tunneling,
PCF policy enforcement, and network slice selection. The 210
UEs are run in batches of 35 UEs using UERANSIM. When
using batches larger than 35 UEs, free5GC’s UPF would run
out of memory. Therefore, we selected this batch size due to
memory allocation issues within the UPF of free5GC.

We recorded the start time as the time that the RAN first
receives a UE Registration Request, after which the RAN
sends this information to the relevant AMF. A UE registration
is one of the most common operations in the core and
triggers a series of inter-NF communication among the NFs.
The end time is when the RAN establishes the data-plane
connection to the UPF for the UE. Between these times, the
core is responsible for authenticating a UE and establishing
the necessary structures in the core to support it.

Our results report the arithmetic mean over all 210 UE
registrations. Each UE registration executes around 40 API
calls in the NRF, NSSF, SMF, AUSF, AMF, PCF, UDM and
UDR. These API calls nearly double when OAuth is enforced,
as OAuth requires an access token request for each API call
(except for NF registrations to the NRF). The core initialized
all NFs for each configuration before the experiments began.
The whiskers on the figure indicate the 95% confidence
interval.

Adding OAuth: Figure 10 shows the overhead in the core for
all three configurations of free5GC. The free5GC configuration
takes 3.21 seconds to establish a UE’s connection while adding
OAuth nearly doubles this setup time to 6.20 seconds (93.27%
increase). While there is room for improvement, additional
access control causes the number of API requests in the core
to nearly double as each API call requests an access token.
We believe improvements in 5GAC-Instrumenter will increase
performance. For example, each access token is given an expiry
time in which it is valid, which we do not consider. Instead
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TABLE I: Proposed changes to the access control policy in 3GPP Release 15.

Service Consumer NF Proposed Access Token APIs Finding
namf-comm SMF namf-comm:n1n2-messages POST /ue-contexts/{ueContextId}/n1-n2-messages Finding 2
namf-comm AMF namf-comm:transfer POST /ue-contexts/{ueContextId}/release

POST /ue-contexts/{ueContextId}/transfer
POST /ue-contexts/{ueContextId}/transfer-update
PUT /ue-contexts/{ueContextId}

Finding 2

namf-comm PCF namf-comm:subscriptions POST /subscriptions Finding 2
nudm-sdm SMF nudm-sdm:sm-data GET /{supi}/sm-data Finding 3
nudm-sdm UDM nudm-sdm:shared-data GET /shared-data

POST /shared-data-subscriptions
DELETE /shared-data-subscriptions/{subscriptionId}

Finding 3

nudm-sdm AMF nudm-sdm:amf-data POST, DELETE /{ueId}/sdm-subscriptions/*
GET /{supi}/nssai
PUT, GET /{supi}/am-data/*
GET {supi}/smf-select-data
GET {supi}/ue-context-in-smf-select-data

Finding 3

nudr-dr UDM nudr-dr:subscription-data GET, POST, DELETE, PATCH /subscription-data/* Fixed in 3GPP R17
nudr-dr PCF nudr-dr:policy-data GET, POST, DELETE, PATCH /policy-data/* Fixed in 3GPP R17
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Fig. 10: Average time for a single UE to connect and set up
the core for operation.

of caching the tokens for the expiry period, we request a new
access token when it is necessary.

Policy Overhead: Figure 10 shows the performance overhead
of changing the policy in the core. We see no significant
difference between the enforcement of the 3GPP policy and
one generated by the Policy Generator. Enforcing the least-
privilege policy causes an additional overhead of 8 ms (0.14%)
compared to the 3GPP policy. This difference is within the
expected experimental error.

C. UE Overhead

The 5G core network operates on the control plane, and
each UE connects to the Internet on the data plane. The UE
establishes an Internet connection through a direct link to the
RAN and UPF. Generally, overhead in the core network should
not affect a UE’s connection throughput due to the separation
in the control and data plane. To measure UE performance
impact, we used the iPerf client in the docker container and the
iPerf server on the host machine in 10-second batches for 100
seconds. We present the results as the average total MB over 10
seconds and the average MB/sec for each configuration. The
whiskers on the figure indicate the 95% confidence interval.

Figure 11 shows the throughput of a UE’s connection to the
Internet as measured by iPerf. In the free5GC configuration,
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Fig. 11: UE Throughput.

the average total MB transferred over 10 seconds is 505.70
MB, averaging 50.51 MB/sec. Introducing OAuth into free5GC
shows negligible difference, with the average MB transferred
over 10 seconds to 514.20 MB (1.6% increase). We believe
the difference is due to network conditions outside our control
and generally unaffected by additional access control checks
in the core.

VIII. DISCUSSION

Limitations: Free5GC has not yet implemented every NF and
API defined in 3GPP Release 15, but it is a fully working 5G
core with some unused or not implemented APIs. Therefore,
our code analysis is limited to what code is implemented and
used in free5GC; however, since our approach is automated,
this process can be re-run when new functionality becomes
available. We identify NF interactions by examining HTTP
calls, therefore, NFs that do not implement a SBA such as the
UPF or Non-3GPP Interworking Function (N3IWF) are not
included. We have not applied our improved access control
policy to another 5G core, such as Open5GS.

We know two other open-source 5G cores: Open5GS
(C++) and the OpenAirInterface 5G core (C++). Since 5GAC-
Analyzer and 5GAC-Instrumenter were built around Golang,
they cannot be directly applied to these implementations.
However, based on a manual investigation of the 3GPP speci-
fications, the described security weaknesses apply to the spec-
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ifications themselves. For example, since OAuth is optional
between the NFs, 5G cores adhering to the standard do not
have to implement OAuth at all. We believe that any code
implementation strictly following the specs will implement
this weakness; however, we leave it to future work to further
evaluate this.

Key agreement: The 3GPP standards specify a key agreement
protocol such that each NF can validate an access token is
from the authorization server. They leave the exact protocol for
distributing signing keys to all NFs left to the implementations.
We do not establish a specific key agreement protocol and only
investigate the access control policy. Instead, we assume hard-
coded keys for signing access tokens. We leave it to future
work to implement TLS certificate signing and validation of
access tokens.

IX. RELATED WORK

Static Analysis for Access Control: Static analysis has been
used in prior work to identify a security policy [22], [44], [47],
[60] or confine system calls within an OS or container [31],
[52]. Li et al. [47] analyzed microservice code using static
analysis to extract interactions between the microservices and
make a security policy. They enforced the security policy at the
container orchestration level in Kubernetes. This architecture
does not apply to a 5G core as OAuth is the access control
mechanism in the 5G core [6].

Pailoor et al. [52] automatically sandbox applications to
a limited set of system calls determined by a static analysis
of the code base. The system calls extracted from static
analysis represent an access control policy for an application.
Ghavamnia et al. [31] apply a similar approach, but target
applications running inside of a container.

NLP is also common to extract the access control policy
from standards documents [11], [64]. These techniques are
often too coarse-grained and miss important information due
to the limitations in NLP. Fortunately, in the 5G specifications,
we are given machine-readable YAML descriptions of all APIs.
Therefore, NLP-based approaches are not the most efficient for
the 5G specifications.

Related to the 5G core, static analysis has been used
to study access control checks within mobile operating sys-
tems. PScout [14] uses static call graph analysis to identify
permission requirements on system service calls in Android.
Kratos [57] identifies missing permission checks at entry points
within Android’s system services. ACMiner [34] is a frame-
work for evaluating authorization check enforcement within
the Android OS. Kratos and ACMiner detect authorization
flaws by performing consistency analysis across a large code
base containing millions of lines of code. ARF [32] builds on
ACMiner and identifies permission re-delegation in Android
by creating an interconnected graph of all entry points in
Android’s system services. FReD [33] builds on ACMiner, and
ARF moves beyond permissions to identify file re-delegation
from entry points within Android’s system services.

OAuth: OAuth 2.0 is a widely used authorization framework
that typically encodes access tokens as a JSON Web To-
ken [36], [40]. However, OAuth is often incorrectly used as
an authentication protocol [24]. Most security efforts towards

OAuth have focused on errors in specific implementations [15],
[24], [46], [58], [59], [61], [65]. A study of over 600 mobile
applications found that around 60% of them incorrectly imple-
ment OAuth and are vulnerable [24]. OAuth is often misun-
derstood and thus incorrectly implemented, and a poor OAuth
implementation can lead to additional vulnerabilities [59].

The OAuth standard is an English text-based protocol
description [36] An analysis of the OAuth protocol revealed
four previously unknown vulnerabilities [30]. They found these
vulnerabilities to be exploitable in practice and considered
all four grant types of OAuth, including client credentials.
The research on OAuth shows that analysis of protocols and
implementations is essential to discover security weaknesses.

Cellular Network Security: Access control in telecommuni-
cations has been a security concern for decades. “phreakers”
can be highlighted as the first instances of failed access control
in telecommunications [54]. These “phreakers” exploited hard-
ware vulnerabilities to make free calls using targeted tones. In
the early days of IP-based telecommunications, vulnerabilities
were discovered within the SS7 protocol [48]. SS7, a funda-
mental signaling protocol, was not improved for future telecom
generations, resulting in authentication vulnerabilities. Cellular
devices were particularly affected.

Cellular generations have their own access control chal-
lenges. Works have fuzzed and analyzed various LTE proto-
cols, discovering spoofing, authentication bypass, and iden-
tifier leakage vulnerabilities [42], [53]. 5G is not immune.
Shortcomings in multiple access control specifications have
been identified with the TAMARIN [50] prover [16], [28].
Discoveries include spoofing and authentication bypass race
conditions. 5G introduces novel access control challenges from
NF virtualization and slicing. Multiple works [9], [20], [56]
highlight access control challenges from multi-tenancy and
NF virtualization. However, unlike this work, all focus on
specification analysis and take a broad, high-level viewpoint.

Works have more broadly studied cellular security. Sym-
bolic model checkers for LTE and 5G standards have been de-
veloped to verify various protocols. LTEInspector and 5GRea-
soner are notable checkers [37], [38]. Numerous works have
analyzed specific portions of 5G standards and have suggested
various improvements [8], [27], [39]. Others have provided
surveys and mitigations of theoretical 5G security threats based
on the standards [9], [10], [41], [49], [55], [63]. All of these
5G works study specifications, not implementations.

Specifications have been studied specifically for access
control. Primarily, works have proposed a new access control
framework for specific 5G use cases, such as industrial IoT or
networked health devices [18], [19], [23], [35], [45]. Some
have looked at the improvements 5G has made to address
access control issues in LTE [17]. Access control between
the RAN and Core has been analyzed, and new mechanisms
proposed [43], [62]. However, these works involve potential
access control mechanisms and proposed use cases. None
focus on access control as it currently exists in 5G Core
implementations or specifications.

X. CONCLUSION

The 5G core makes significant advances over the 4G core
by switching from specialized hardware to a SBA running
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on commodity cloud infrastructure and supporting third-party
NFs. These changes introduce new attack surfaces that require
careful consideration. This paper used static analysis of a 5G
core reference implementation to define and instrument a least
privilege access control policy for requests between 5G core
NFs. It also used the least privilege policy to identify two new
over-privilege flaws in the OAuth policy defined in the 3GPP
specifications. These flaws allow a malicious NF to interrupt
UE network connectivity and extract subscriber information.
By adopting our refined policy, 5G core implementations can
reduce their attack surface by opening the network to these
new threats.
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ACRONYMS

AMF Access & Mobility Management Function.

N3IWF Non-3GPP Interworking Function.
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NF Network Functions.
NRF Network Repository Function.

PCF Policy Control Function.

RAN Radio Access Network.

SBA Service-based Architecture.
SEPP Security Edge Protection Proxy.
SMF Session Management Function.

UDM Unified Data Management Function.
UDR Unified Data Repository Function.
UE User Equipment.
UPF User Plane Function.
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