	
3GPP TSG-CT WG4 Meeting #113	C4-225096
Toulouse, France, 14th – 18th November 2022


Source:	Samsung
Title:	Solution to avoid storage and transmission of duplicate profile data
Spec:	3GPP TR 29.831 v0.1.0
Agenda item:	6.1.3
Document for:	Approval

1. Introduction
NF-profiles of NF instances (of same or different NF-type) may share a significant set of common data. Existing NRF APIs do not leverage the concept of shared data, which results in signalling overhead (both in terms of payload size and number of HTTP requests), processing overhead (at the NRF and NFs) and data storage/caching overhead (at NRF and discovering NFs).

This pCR proposes a solution to KI #1, by introducing a separate nf-sets branch into Nnrf_NFManagement and Nnrf_NFDiscovery API resource structures.

2. Proposal
It is proposed to agree the following changes to 3GPP TR 29.831 v0.1.0.

[bookmark: _Hlk61529092]* * * First Change * * * 
[bookmark: _Toc42763475][bookmark: _Toc49769246][bookmark: _Toc56438050][bookmark: _Toc56438192][bookmark: _Toc56438266][bookmark: _Toc57274137][bookmark: _Toc57274605][bookmark: _Toc66461546][bookmark: _Toc70926338][bookmark: _Toc86043841]6.X	Solution #X: Solution to avoid storage and transmission of duplicate profile data
[bookmark: _Toc49769247][bookmark: _Toc56438051][bookmark: _Toc56438193][bookmark: _Toc56438267][bookmark: _Toc57274138][bookmark: _Toc57274606][bookmark: _Toc66461547][bookmark: _Toc70926339][bookmark: _Toc86043842]6.X.1	Description
[bookmark: _Toc49769248][bookmark: _Toc56438052][bookmark: _Toc56438194][bookmark: _Toc56438268][bookmark: _Toc57274139][bookmark: _Toc57274607][bookmark: _Toc66461548][bookmark: _Toc70926340][bookmark: _Toc86043843]The solution proposes that parameters of NF-Instance's NF-Profile are locally categorized into "common data" and "specific data". "Common data" is expected to be same across all NF-Instances of an NF-Set. When NF-Instances belonging to the NF-Set register their profile into the NRF using Nnrf_NFManagement service, they register "common data" into a separate profile and identify it using an "NF-Set" Identifier. The individual NF-profiles of the NF-Instance containing "specific data" are then registered into the NRF, not containing "common data", but only an indication that information contained in the NF-Set profile (identified using the NF-Set identifier) also applies to this NF-Instance's profile.

6.X.1.1	Nnrf_NFManagement Service 
FIG. 6.X.1 shows resource structure of Nnrf_NFManagement API. It is proposed to extend the resource structure with a new branch for nf-sets resource collection to store the common data.

[image: C:\Users\varini.gupta\Desktop\Capture.JPG]
FIG.6.X.1 Nnrf_NFManagement API Resource Structure with nf-sets Branch

FIG. 6.X.2 shows how such a mechanism helps improve the information stored in the NRF for multiple NF-Instances of the same NF-Set. 

For the illustration of the solution, let's assume that there are 4 NF-Instances belonging to NF-Set=A. 

[image: C:\Users\varini.gupta\Desktop\Capture.JPG]

 FIG.6.X.2 NF-Set Registration followed by NF-Instance Registration

Step #1: When the NF-Instance #1 comes up, it checks with the NRF if it already has a profile for NF-Set=A by sending a request to the NRF. For example, an HTTP GET service operation could be defined on /nf-sets resource.

Step #2: The NRF responds back saying it does not have a profile for NF-Set=A. For example, the NRF can send an HTTP Error "404 Not found" to indicate this.

Step #3: The NF-Instance #1 registers NF-Set=A profile with the NRF, containing "common data". An HTTP PUT/POST method could be defined on /nf-sets or /nf-sets/{nfsetId} resource.

Step #4: The NF-Instance #1 then proceeds with registering the NF-Instance profile in the NRF using Nnrf_NFManagement_NFRegister service operation; containing NF-Instance specific data. The NF-Instance Common-data is not included, and instead only a pointer to NF-Set=A's profile is indicated in the NF-Instance profile.

Step #5: The NF-Instance #2,3,4 come up and they check with NRF if it already has a profile for NF-Set=A (same as Step #1).

Step #6: Since the NF-Instance #1 has already registered the NF-Set=A's profile in Step #3, the NRF responds back saying it has the profile.

Step #7: The NF-Instance #2,3,4 can now proceed with registering their NF-Instance profile in the NRF using Nnrf_NFManagement_NFRegister service operation; containing NF-Instance specific data. 

Thus, the information stored in the NRF is not duplicated, neither in signalling from the NF-Instances, nor in the storage in the NRF.

If the NFs host multiple NF-Services of an NF-Service Set, the NF-Service configuration too can be optimized as "NF-Service Common Data" and "NF-Service Specific Data".

It is also possible to optimize the signalling further by avoiding Step #1-3 (& 5-6) altogether and directly sending Step #4 (and/or #7). If NRF does not have profile of NF-Set=A, it can send a response (200 OK) with an indication that NF-Set=A's profile needs to be registered. Based on this indication, NF-Instance #1 can proceed with registering the NF-Set=A's profile into NRF. On the other hand, when NF-Instance #2,3,4 register their profile as shown in Step #7, they don't get such an indication in NRF response, hence they can assume that NRF already has the profile of NF-Set=A. FIG. 6.X.2A shows the resultant call-flow for NF-Profile Registration Operation:

[image: ]

FIG.6.X.2A NF-Instance Registration followed by NF-Set Registration

Step #1: The NF-Instance #1 registers its profile in the NRF using Nnrf_NFManagement_NFRegister service operation; containing NF-Instance specific data. The NF-Instance Common-data is not included, and instead only a pointer to NF-Set=A's profile is indicated in the NF-Instance profile.

[bookmark: _GoBack]Step #2: The NRF responds 202 accepted, including an indication that it does not have a profile for NF-Set=A.

Step #3: The NF-Instance #1 registers NF-Set=A profile with the NRF, containing "common data". 

Step #4: The NF-Instance #2,3,4 can now proceed with registering their NF-Instance profile in the NRF; containing NF-Instance specific data. 

6.X.1.2	Nnrf_NFDiscovery Service 
FIG.6.X.3 proposes to extend the resource structure of Nnrf_NFDiscovery API with a new branch for nf-sets as shown below:

[image: C:\Users\varini.gupta\Desktop\Capture.JPG]

FIG.6.X.3 Nnrf_NFDiscovery API Resource Structure with NF-Set Branch

When an NF-Consumer sends a request to NRF to discover network functions of a particular nf-type, as shown in FIG.6.X.4, following sequence of events happen:

[image: C:\Users\varini.gupta\Desktop\Capture.JPG]

FIG.6.X.4 NF-Set Information Discovery 

Step #1: NF-Consumer sends Nnrf_NFDiscovery_NFDiscover request to the NRF to discover NF-Instances of a particular nf-type

Step #2: NRF finds 4 NF-Instances, all belonging to a nf-set=A, and returns in Nnrf_NFDiscovery_NFDiscover response, containing NF-Instance specific data of all the 4 NF-Instances. NF-Instance Common-data is not included, and instead only a pointer to NF-Set=A's profile is indicated in the NF-Instance profiles.

Step #3: Upon receiving response from NRF, NF-Consumer checks if it already has the profile of nf-set=A. If not, it sends a request to the NRF to provide nf-set=A's profile. This can be done by using an HTTP GET service operation on /nf-sets resource.

Step #4: NRF responds back with nf-set=A's profile.

Thus, the payload-size of HTTP response to Discovery requests reduces, and NF-Consumer and/or NRFs do not need to cache duplicate information.

6.X.1.3	Nnrf_NFManagement_NFStatusSubscribe Service Operation
The solution proposed also helps reduce the unnecessary data-change notifications. As shown in FIG. 6.X.5, since all the common-data is now stored in a separate nf-set profile, the NF-Consumer can subscribe to, for example, data-change notifications for changes in NF-Set=A's profile. Whenever there is a change in Common-data of the individual NF-Instance's profiles, all they need is update the NF-Set=A's profile in NRF. This will result in a single notification generated towards NF-Consumer(s). 

[image: C:\Users\varini.gupta\Desktop\Capture.JPG]

FIG.6.X.5 Reduction in Data-Change Notifications with NF-Set Profiles

6.X.2	Impacts on services, entities and interfaces
[bookmark: _Toc49769263][bookmark: _Toc56438072][bookmark: _Toc56438214][bookmark: _Toc56438288][bookmark: _Toc57274158][bookmark: _Toc57274627][bookmark: _Toc66461570][bookmark: _Toc70926362][bookmark: _Toc86043865][bookmark: _Toc113262352]- NRF APIs to be modified to contain nf-sets sub-branch
- NF-Consumers need to change the way they consume NRF APIs
6.X.3	Pros
The solution optimizes Register, Discovery and Subscribe operations by extending resource structure for NF-Sets. The solution also improves storage (include cache) in NRF/NFs. 
[bookmark: _Toc49769264][bookmark: _Toc56438073][bookmark: _Toc56438215][bookmark: _Toc56438289][bookmark: _Toc57274159][bookmark: _Toc57274628][bookmark: _Toc66461571][bookmark: _Toc70926363][bookmark: _Toc86043866][bookmark: _Toc113262353]6.X.4	Cons
NA

* * * End of Changes * * * 
image4.jpeg

image5.jpeg

image6.jpeg

image1.jpeg

image2.jpeg

image3.png

