

	
3GPP TSG-CT WG4 Meeting #107-bis-e	C4-220198
E-Meeting, 17th – 21st January 2022

Source:	Ericsson
Title:	URL Encoding
Spec:	-
Release:	Rel-17
Agenda item:	6.1.2
Document for:	Decision

1.	Introduction
As indicated in IETF RFC 3986 [1], the URI syntax defines a set of characters (a subset of the URI allowed characters) as delimiters of syntax components; those characters are called "reserved" and should not be used in URI fields intended to convey generic "data" (e.g., in a query parameter), since this would interfere with the original meaning (syntax) of those reserved characters. These characters should, then, be "escaped" (percent encoded). This is a general scenario affecting all APIs in 3GPP 5GC.
A similar scenario occurs in HTTP request bodies whose media type is defined as application/x-www-form-urlencoded, since the serialization and encoding of those request bodies is meant to be almost identical to how an URL is formed. OpenAPI refers to IETF RFC 1866 [2] for the encoding requirements of such request bodies. Currently, this media type is used in the NRF Oauth2 Access Token Request API.
It should be noted that, even with those references to IETF RFCs, it is not totally clear which is the exact character set that should be escaped, or percent encoded. This is the main issue addressed by this paper.

2.	Discussion
Problem 1
According to IETF RFC 3986 [1], section 2.2, the set of reserved characters is as follows:
: / ? # [] @ ! $ & ' () * + , ; =

When any of these characters appear in "data" fields in an URI, they must be escaped, or percent encoded, before the final URI is formed.
Two issues are identified:
-	Should any other characters be escaped as well? For example:
-	Curly brackets: { }
-	Quote: "
-	Space: SP
-	If spaces (SP) are to be escaped, should they be percent encoded (as %20) or escaped as + ?

For HTTP request bodies (x-www-form-urlencoded), the IETF RFC pointed by OpenAPI specification is IETF RFC 1866 [2], section 8.2.1, which requires:
-	Spaces (SP) to be escaped as character + (and not percent encoded)
-	Escape reserved characters as defined by IETF RFC 1738 [3]; the reserved set is as follows
; / ? : @ = &

-	In addition, IETF RFC 1738 [3] defines an "unsafe" character set, and it required to escape them when they appear in an URL; the unsafe set is as follows:
SP < > " # % { } | \ ^ ~ [] `

Again, some issues are identified:
-	Should "unsafe" characters be escaped or not?
-	On one hand, it seems logical to escape SP " { } [] (given that many OpenAPI query parameters contain JSON-formatted data), but it seems unnecessary to escape ^ ~ | ` (IETF RFC 3986 [1] considers them as normal characters).
-	On the other hand, comma is not included as reserved or unsafe; however, in IETF RFC 3986 [1], it is a reserved character.
-	While it seems clear that the RFC requires spaces (SP) to be escaped as +, most popular OpenAPI tools (e.g., Swagger) escape them as %20

It should be noted that in both scenarios there are data fields where JSON structures as serialized into a string and are passed as query parameters, and in URL-encoded HTTP request bodies. These JSON parameters contain, as part of their syntax, the following characters:
{ } [] " : , SP

Consequently, it is quite unclear which is the exact character set that shall be escaped, in each scenario.

Problem 2
As indicated before, IETF RFC 3986 [1] defines the comma , character as reserved so it should be percent encoded as %2C; however, this creates a parsing problem when a query parameter is defined in OpenAPI as an array of strings (and when such strings contain free-form text, which may include the comma character itself).
As required by 3GPP TS 29.501, when a query parameter consists of an array of strings, 3GPP APIs are required to format such parameters with the following OpenAPI keywords:
style: form
explode: false

This means that the parameter occurs only once in the URI query string, and its content is a comma-separated list of string values. For example, if "param" is defined as a JSON array of strings as ["foo", "bar"], the URI should be formatted as:
GET ../resource?param=foo,bar

So, if the string values may contain commas, there is a problem. For example, a "location" parameter taking values:
["West 1, US", "East 2, US"]

How should this query parameter be formatted? Before URL-encoding, it would be:
GET ../resource?location=West 1, US,East 2, US

So, URL-encoding the entire parameter (using + to escape SP), it would be:
GET ../resource?location=West+1%2C+US%2CEast+2%2C+US

In both cases, the correct parsing of the parameter is not possible. It seems that the only possible approach is to escape only the commas inside the string values, but keep unescaped the comma used for separator of parameter values, as:
GET ../resource?location=West+1%2C+US,East+2%2C+US

This is how certain OpenAPI tools (e.g., Swagger) do the encoding today, but if such approach is pursued, it should be clearly documented in 3GPP specs.
A big drawback of this approach is that this requires the URL-encoding logic and the process used to build the URI to work on a per-parameter basis and determine whether each parameter is a non-exploded array of strings, rather than passing the entire query string to an URL-encoding library, which would be the trivial approach.
Other alternatives might be (none of them really useful):
-	Use "explode: true" for those query parameters (although this is not an option for existing APIs, due to backwards incompatibility)
-	Restrict free-form strings to not contain the "," character (seems like a too strong and artificial limitation)

3.	Proposal
For Problem 1, It is proposed to discuss the issue and agree on an exact character set and escaping method, for each scenario, to avoid inter-operability issues.
It is proposed to bring CRs for CT4#108-e, to:
-	3GPP TS 29.500, Rel-17 (or earlier?), specifying clear URL-encoding requirements for 3GPP APIs
-	3GPP TS 29.510, Rel-15 onwards (because that's the only TS with an API where URL-encoded HTTP request bodies are used. A draft proposal is provided in C4-220199 [4] "for discussion", but it is not submitted "for agreement" at this meeting (CT4#107-bis-e)
For Problem 2, it should be agreed how to URL-encode query parameters defined as arrays of strings and clearly document it in 3GPP TS 29.501 (at least).

4.	References
[1]	IETF RFC 3986: https://tools.ietf.org/html/rfc3986
[2]	IETF RFC 1866: https://tools.ietf.org/html/rfc1866
[3]	IETF RFC 1866: https://tools.ietf.org/html/rfc1738
[4] C4-220199: Draft CR to 3GPP TS 29.510 Rel-15, submitted to CT4#107-bis-e "for discussion".
