

	
3GPP TSG-CT WG4 Meeting #102-e	C4-211483
E-Meeting, 24th Feb – 5th Mar 2021
	CR-Form-v12.1

	CHANGE REQUEST

	

	
	29.501
	CR
	0101
	rev
	-
	Current version:
	17.0.0
	

	

	For HELP on using this form: comprehensive instructions can be found at
http://www.3gpp.org/Change-Requests.

	

	Proposed change affects:
	UICC apps
	
	ME
	
	Radio Access Network
	
	Core Network
	X

	

	Title:	
	Editorial Corrections

	
	

	Source to WG:
	Ericsson

	Source to TSG:
	CT4

	
	

	Work item code:
	SBIProtoc17
	
	Date:
	2021-02-15

	
	
	
	
	

	Category:
	D
	
	Release:
	Rel-17

	
	Use one of the following categories:
F (correction)
A (mirror corresponding to a change in an earlier 													release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)
Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	Use one of the following releases:
Rel-8	(Release 8)
Rel-9	(Release 9)
Rel-10	(Release 10)
Rel-11	(Release 11)
…
Rel-15	(Release 15)
Rel-16	(Release 16)
Rel-17	(Release 17)
Rel-18	(Release 18)

	
	

	Reason for change:
	Editorial issues found in the TS.

	
	

	Summary of change:
	Several editorial corrections.

	
	

	Consequences if not approved:
	Poor quality of the specification.

	
	

	Clauses affected:
	4.6.1.1.5.1, 5.3.2, 5.3.9, 5.3.10, 5.3.12, 5.3.13, 5.3.14, Annex E

	
	

	
	Y
	N
	
	

	Other specs
	
	X
	 Other core specifications	
	TS/TR ... CR ...

	affected:
	
	X
	 Test specifications
	TS/TR ... CR ...

	(show related CRs)
	
	X
	 O&M Specifications
	TS/TR ... CR ...

	
	

	Other comments:
	

	
	

	This CR's revision history:
	

Page 1

[bookmark: _Toc19702449][bookmark: _Toc27751605][bookmark: _Toc35971691][bookmark: _Toc35975940][bookmark: _Toc44849397][bookmark: _Toc51853038][bookmark: _Toc51859711][bookmark: _Toc57026085][bookmark: _Toc24937542][bookmark: _Toc33962357][bookmark: _Toc24937834][bookmark: _Toc33962654][bookmark: _Toc42883423][bookmark: _Toc49733291][bookmark: _Toc56690660][bookmark: _Toc58585438]* * * First Change * * * *
4.6.1.1.5	Query Parameters
[bookmark: _Toc19702450][bookmark: _Toc27751606][bookmark: _Toc35971692][bookmark: _Toc35975941][bookmark: _Toc44849398][bookmark: _Toc51853039][bookmark: _Toc51859712][bookmark: _Toc57026086]4.6.1.1.5.1	General
The query component in the URI contains non-hierarchical data that, along with data in the path component, to filter the resources identified within the scope of the URI's scheme to a subset of the resources matching the query parameters. The query component is indicated by the first question mark ("?") character and terminated by a number sign ("#") character or by the end of the URI. The syntax of the query component is specified in IETF RFC 3986 [9].
When a server receives a request with a query component, it shall parse the query string in order to identify filters. The first question mark is used to be a separator and is not part of the query string. A query string is composed of a series of "key=value" pairs, separated by "&". If one query parameter contains more than one value, i.e. an array of data elements, different values shall be separated by comma (",").
The behaviour of the server, when receiving an HTTP/2 method with a query parameter which is of type array and only some of the members in the array can be matched, depends on each API and the behaviour shall be clearly described.
If multiple query parameters are defined for a method on the resource, the default logical relationship of the query parameters shall be clearly described.
* * * Next Change * * * *
[bookmark: _Toc51853101][bookmark: _Toc51859774][bookmark: _Toc57026148]5.3.2	Formatting of OpenAPI specification files
The following guidelines shall be used when documenting OpenAPI specification files:
-	OpenAPI specification files shall be documented using YAML format (see YAML 1.2 [16]). For specific restrictions on the usage of YAML in OpenAPI, see OpenAPI 3.0.0 Specification [4].
-	The style used for the specification shall be "PL" (Programming Language).
-	The different scopes in the YAML data structures representing collections (objects, arrays…) shall use an indentation of two white spaces.
-	Comments may be added by following the standard YAML syntax ("#").

[bookmark: _Toc51859784][bookmark: _Toc51853111][bookmark: _Toc44849469][bookmark: _Toc35976012][bookmark: _Toc35971763][bookmark: _Toc27751677][bookmark: _Toc19702516][bookmark: _Toc57026158]* * * Next Change * * * *
5.3.9	Structured data types
For a structured data type, as defined in clause 5.2.4.2, the OpenAPI Sspecification [4] file shall contain a definition in the components/schemas clause defining a schema with the name of the structured data type as key.
The schema shall contain:
-	"type: object";
-	"description: <description>", where <description> is the description of the data type in the table defining the structured data type. The "description" attribute should be provided for all data types, specially if they are frequently reused from the same or other OpenAPI specification files; the "description" attribute shall always be provided for data types defined as maps, with a clear indication of the values (strings) used as key of the map.
-	if any attributes in the structured data type are marked as mandatory, a "required" keyword listing those attributes; and
-	a "properties" keyword containing for each attribute in the structured data type an entry with the attribute name as key and:
1.	if the data type is "<type>":
a.	if the data type of the attribute is "string", "number", "integer", or "boolean";
i)	a type definition using that data type as value ("type: <data type>"); and
ii)	optionally "description: <description>", where <description> is the description of the attribute in the table defining the structured data type; or
b.	otherwise a reference to the data type schema for the data type <data type> of the attribute, i.e. "$ref: '#/components/schemas/<data type>'" if that data type schema is contained in the same OpenAPI specification file and "$ref: '<filename>#/components/schemas/<data type>'" if that data type schema is contained in file <filename> in the same directory on the same server;
2.	if the data type is "array(<type>)":
a.	a type definition "type: array";
b.	an "items:" definition containing:
i).	if the data type of the attribute is "string", "number", "integer", or "boolean", a type definition using that data type as value ("type: <data type>"); or
ii).	otherwise a reference to the data type schema for the data type <data type> of the attribute, i.e. "$ref: '#/components/schemas/<data type>'" if that data type schema is contained in the same OpenAPI specification file and "$ref: '<filename>#/components/schemas/<data type>'" if that data type schema is contained in file <filename> in the same directory on the same server;
c.	if the cardinality contained an integer value <m> as lower boundary, "minItems: <m>"; and
d.	if the cardinality contained an integer value <n> as upper boundary, "maxItems: <n>"; and
e.	optionally "description: <description>", where <description> is the description of the attribute in the table defining the structured data type;
3.	if the data type is "map(<type>)":
a.	a type definition "type: object"; and
b.	an "additionalProperties:" definition containing:
i).	if the data type of the attribute is "string", "number", "integer", or "boolean", a type definition using that data type as value ("type: <data type>"); or
ii).	otherwise a reference to the data type schema for the data type <data type> of the attribute, i.e. "$ref: '#/components/schemas/<data type>'" if that data type schema is contained in the same OpenAPI specification file and "$ref: '<filename>#/components/schemas/<data type>'" if that data type schema is contained in file <filename> in the same directory on the same server;
c.	if the cardinality contained an integer value <m> as lower boundary, "minProperties: <m>"; and
d.	if the cardinality contained an integer value <n> as upper boundary, "maxProperties: <n>"; and
e.	"description: <description>", where <description> is the description of the attribute in the table defining the structured data type; the "description" attribute shall always be provided for attributes defined as maps, with a clear indication of the values (strings) used as key of the map.
NOTE:	An omission of the "minProperties", and "maxProperties" keywords indicates that no lower or upper boundaries respectively, for the number of properties in an object are defined. An omission of the "minItems", and "maxItems" keywords indicates that no lower or upper boundaries, respectively, for the number of items in an array are defined.
4.	if the data type is "Any Type":
a.	if no properties to be defined, a pair of curly braces after the attribute name key "<attribute name>: {}", which is shorthand syntax for an arbitrary-type schema; or
b.	at least one of the following properties:
i)	if null value is allowed, "nullable: true"; or
ii).	"description: <description>", where <description> is the description of the attribute in the table defining the structured data type.
Example:
Table 5.3.9-1: Definition of type ExampleStructuredType
	Attribute name
	Data type
	P
	Cardinality
	Description
	Applicability

	exSimple
	ExSimple
	M
	1
	exSimple attribute description
	

	exArrayElements
	array(string)
	O
	0..10
	exArrayElements attribute description
	

	exMapElements
	map(ExStructure)
	M
	1..N
	exMapElements attribute description
	

	exAnyTypeNullableElement
	Any Type
	O
	0..1
	exAnyTypeNullableElement attribute description
	

	exAnyTypeNoDescription
	Any Type
	O
	0..1
	n/a
	

The data structure in table 5.3.9-1 is described in an OpenAPI specification file as follows:
components:
 schemas:
 ExampleStructuredType:
 type: object
 description: ExampleStructuredType data type description
 required:
 - exSimple
 - exMapElements
 properties:
 exSimple:
 $ref: '#/components/schemas/ExSimple'
 exArrayElements:
 type: array
 items:
 type: string
 minItems: 0
 maxItems: 10
 description: exArrayElements attribute description
 exMapElements:
 type: object
 additionalProperties:
 $ref: '#/components/schemas/ExStructure'
 minProperties: 1
 description: exMapElements attribute description, indicating values of the map keys
 exAnyTypeNullableElement:
 nullable: true
 description: exAnyTypeNullableElement attribute description
 exAnyTypeNoDescription: {}

[bookmark: _Toc19702517][bookmark: _Toc27751678][bookmark: _Toc35971764][bookmark: _Toc35976013][bookmark: _Toc44849470][bookmark: _Toc51853112][bookmark: _Toc51859785][bookmark: _Toc57026159]* * * Next Change * * * *
5.3.10	Data types describing alternative data types or combinations of data types
For a data type describing alternatives, as defined in clause 5.2.4.5, the OpenAPI Sspecification [4] file shall contain a definition in the components/schemas clause defining a schema with the name of the data type describing alternatives as key.
The schema shall contain:
-	the "oneOf", "anyOf" or "allOf" keyword selected as follows:
1.	for table caption "Definition of type <Data type> as a list of mutually exclusive alternatives", the "oneOf" keyword;
2.	for table caption "Definition of type <Data type> as a list of non-exclusive alternatives", the "anyOf" keyword;
3.	for table caption "Definition of type <Data type> as a list of to be combined data types", the "allOf" keyword;
-	a list of alternatives, containing for each line in the table describing the data type a separate line starting with "-":
1.	if the data type is "<type>":
a.	if the data type of the attribute is "string", "number", "integer", or "boolean";
i)	a type definition using that data type as value ("type: <data type>"); and
ii)	optionally "description: <description>", where <description> is the description of the attribute in the table defining the structured data type; or
b.	otherwise a reference to the data type schema for the data type <data type> of the attribute, i.e. "$ref: '#/components/schemas/<data type>'" if that data type schema is contained in the same OpenAPI specification file and "$ref: '<filename>#/components/schemas/<data type>'" if that data type schema is contained in file <filename> in the same directory on the same server;
2.	if the data type is "array(<type>)":
a.	a type definition "type: array";
b.	an "items:" definition containing:
i).	if the data type of the attribute is "string", "number", "integer", or "boolean", a type definition using that data type as value ("type: <data type>"); or
ii).	otherwise a reference to the data type schema for the data type <data type> of the attribute, i.e. "$ref: '#/components/schemas/<data type>'" if that data type schema is contained in the same OpenAPI specification file and "$ref: '<filename>#/components/schemas/<data type>'" if that data type schema is contained in file <filename> in the same directory on the same server;
c.	if the cardinality contained an integer value <m> as lower boundary, "minItems: <m>"; and
d.	if the cardinality contained an integer value <n> as upper boundary, "maxItems: <n>"; and
e.	optionally "description: <description>", where <description> is the description of the attribute in the table defining the structured data type;
3.	if the data type is "map(<type>)":
a.	a type definition "type: object"; and
b.	an "additionalProperties:" definition containing:
i).	if the data type of the attribute is "string", "number", "integer", or "boolean", a type definition using that data type as value ("type: <data type>"); or
ii).	otherwise a reference to the data type schema for the data type <data type> of the attribute, i.e. "$ref: '#/components/schemas/<data type>'" if that data type schema is contained in the same OpenAPI specification file and "$ref: '<filename>#/components/schemas/<data type>'" if that data type schema is contained in file <filename> in the same directory on the same server;
c.	if the cardinality contained an integer value <m> as lower boundary, "minProperties: <m>"; and
d.	if the cardinality contained an integer value <n> as upper boundary, "maxProperties: <n>"; and
e.	optionally "description: <description>", where <description> is the description of the attribute in the table defining the structured data type.
NOTE:	An omission of the "minProperties", and "maxProperties" keywords indicates that no lower or upper boundaries respectively, for the number of properties in an object are defined. An omission of the "minItems", and "maxItems" keywords indicates that no lower or upper boundaries, respectively, for the number of items in an array are defined.
Example:
Table 5.3.10-1: Definition of type ExampleAlternativesType as a list of mutually exclusive alternatives
	Data type
	Cardinality
	Description
	Applicability

	ExSimple
	1
	exSimple attribute description
	

	array(string)
	0..10
	exArrayElements attribute description
	

	map(ExStructure)
	1..N
	exMapElements attribute description
	

The data structure in table 5.3.10-1 is described in an OpenAPI specification file as follows:
components:
 schemas:
 ExampleAlternativesType:
 oneOf:
 - $ref: '#/components/schemas/ExSimple'
 - type: array
 items:
 type: string
 minItems: 0
 maxItems: 10
 description: exArrayElements attribute description
 - type: object
 additionalProperties:
 $ref: '#/components/schemas/ExStructure'
 minProperties: 1
 description: exMapElements attribute description

[bookmark: _Toc19702519][bookmark: _Toc27751680][bookmark: _Toc35971766][bookmark: _Toc35976015][bookmark: _Toc44849472][bookmark: _Toc51853114][bookmark: _Toc51859787][bookmark: _Toc57026161]* * * Next Change * * * *
5.3.12	Enumerations
For enumerations, as defined in clause 5.2.4.3, the OpenAPI Sspecification [4] file shall contain a definition in the components/schemas clause defining a schema with the name of the enumeration as key.
The schema
-	shall contain the "anyOf" keyword listing as alternatives:
1.	the "type: string" keyword and the "enum" keyword with a list of all defined values for the enumeration; and
2.	the "type: string" keyword and the "description" keyword with a description stating that the string is only provided for extensibility and is not used to encode contents defined in the present version of the specification. and
-	may contain a description listing the defined values of the enumeration together with explanations of those values.
NOTE:	The "enum" keyword restricts the permissible values of the string to the enumerated ones. This can lead to extensibility problems when new values need to be introduced.
Example:
Table 5.3.12-1: Enumeration ExampleEnumeration
	Enumeration value
	Description
	Applicability

	One
	Value One description
	

	Two
	Value Two description
	

The data structure in table 5.3.12-1 is described in an OpenAPI specification file as follows:
components:
 schemas:
 ExampleEnumeration:
 anyOf:
 - type: string
 enum:
 - One
 - Two
 - type: string
 description: >
 This string provides forward-compatibility with future
 extensions to the enumeration but is not used to encode
 content defined in the present version of this API.
 description: >
 Possible values are
 - One: Value One description
 - Two: Value Two description

[bookmark: _Toc19702520][bookmark: _Toc27751681][bookmark: _Toc35971767][bookmark: _Toc35976016][bookmark: _Toc44849473][bookmark: _Toc51853115][bookmark: _Toc51859788][bookmark: _Toc57026162]* * * Next Change * * * *
5.3.13	Formatting of structured data types in query parameters
Structured data types shall represent JSON objects or arrays.
When used in query parameters of a URI, the following formatting shall be used:
-	JSON objects and arrays of JSON objects: they shall be formatted using the JSON syntax, which is specified in OpenAPI Specification [4] by including a "content:" block, and specifying the "application/json" media type, followed by the OpenAPI definition of the object.
EXAMPLE:
 - name: plmn-id
 in: query
 content:
 application/json:
 schema:
 type: object
 properties:
 mcc:
 type: string
 mnc:
 type: string

This results in the following formatting:
 .../resource?plmn-id={"mcc":"123","mnc":"456"}

-	Arrays of simple types: they shall be formatted using the OpenAPI "style" keyword set to "form" and the "explode" keyword set to "false".
EXAMPLE:
 - name: service-names
 in: query
 style: form
 explode: false
 schema:
 type: array
 items:
 type: string

This results in the following formatting:
 .../resource?service-names=service1,service2,service3

[bookmark: _Toc19702521][bookmark: _Toc27751682][bookmark: _Toc35971768][bookmark: _Toc35976017][bookmark: _Toc44849474][bookmark: _Toc51853116][bookmark: _Toc51859789][bookmark: _Toc57026163]* * * Next Change * * * *
5.3.14	Attribute Presence Conditions
In an OpenAPI sSpecification [4], presence conditions for attributes in a JSON schema definition shall be expressed by using the "required" keyword, indicating a list (array) of attributes that shall always be present in an object conforming to such schema.
The "required" keyword may be used as part of any of the expressions defined by OpenAPI to combine schemas ("oneOf", "anyOf", "allOf", "not").
EXAMPLES:
-	JSON object defining attributes "a" and "b", of type integer, where attribute "a" shall always be present:
components:
 schemas:
 ExampleType1:
 type: object
 required: [a]
 properties:
 a:
 type: integer
 b:
 type: integer

-	JSON object defining attributes "a" and "b", of type integer, where at least one of them, or both, shall be present:
components:
 schemas:
 ExampleType2:
 type: object
 anyOf:
 - required: [a]
 - required: [b]
 properties:
 a:
 type: integer
 b:
 type: integer

-	JSON object defining attributes "a" and "b", of type integer, where at least one of them shall be present, but not both:
components:
 schemas:
 ExampleType3:
 type: object
 oneOf:
 - required: [a]
 - required: [b]
 properties:
 a:
 type: integer
 b:
 type: integer

-	JSON object defining attributes "a" and "b", of type integer, where "a" and "b" can be both absent but, if one of them is present, the other shall be absent:
components:
 schemas:
 ExampleType4:
 type: object
 not:
 required: [a, b]
 properties:
 a:
 type: integer
 b:
 type: integer

-	JSON object defining attributes "a" and "b", of type integer, where "b" shall be present if "a" takes a given value (e.g., value 1), but may be absent otherwise:
components:
 schemas:
 ExampleType5:
 type: object
 properties:
 a:
 type: integer
 b:
 type: integer
 anyOf:
 - not:
 required: [a]
 properties:
 a:
 type: integer
 enum: [1]
 - required: [b]

-	JSON object defining attributes "a" and "b", of type integer, where "b" shall be present if and only if "a" takes a given value (e.g., value 1):
components:
 schemas:
 ExampleType6:
 type: object
 properties:
 a:
 type: integer
 b:
 type: integer
 oneOf:
 - required: [a]
 properties:
 a:
 type: integer
 enum: [1]
 - not:
 required: [b]

[bookmark: _Toc51853133][bookmark: _Toc51859806][bookmark: _Toc57026180]* * * Next Change * * * *
Annex E (Informative):
Considerations for handling of JSON arrays
This Annex provides guidelines on the use of JSON arrays on the SBI APIs of the 5GC.
As described in clause 5.2.4, the data model of an API definition in a 5GC API consists of any of the different data types supported by OpenAPI, corresponding to the different data structures found in the JSON data format. One of these structures is the "array", representing a set of ordered values.
It should be noted that, while JSON allows that the value of the elements of an array may be of different types, in OpenAPI Specification [4] 3.0.0 this is further restricted, and all elements of an array shall be of the same type.
Also, it is important to note that the JSON format itself, as specified in IETF RFC 8259 [3], does not define any syntax to refer to specific array elements.
However, there are certain conventions to specify mechanimsmechanism to refer to array elements, e.g. based on the position a given element has in the array.
In particular, the JSON Pointer syntax defines a string syntax for identifying a specific value within a JSON document. This syntax consists of a number of tokens separated by the "/" character; in order to refer to a specific element in an array, then token shall contain an unsigned decimal value, indicating the zero-based index of the element in the array.
EXAMPLE:
JSON document:
{
 "attr1": 0,
 "attr2": true,
 "attr3": [1, 2, 3]
}

JSON Pointer expression "/attr3/0" evaluated on such JSON document: 1

There are several scenarios, frequently employed in the 5GC APIs, that make use of the JSON Pointer mechanism to refer to specific elements in an array:
-	Update of resources using the PATCH method, as described in clause 4.6.1.1.3.2. If the syntax used in the PATCH request payload is based on the "JSON Patch" format, then the JSON Pointer mechanism is used to specify patch operations applied to specific array elements.
-	Notifications of events (such as data changes), as described in clause 4.6.2.3, using as notification payload the notation defined in "NotifyItem" / "ChangeItem" data types defined in 3GPP TS 29.571 [xx]. This notation is similar to "JSON Patch", so it also makes use of the JSON Pointer syntax to refer to specific array elements.
-	Explicit usage of attributes containing JSON Pointer expressions in request or response payloads.
In these scenarios, it is critical that any JSON Pointer expression is applied by both client and server on the exact same array representation, since otherwise the indexes may vary, and the JSON Pointer will give unexpected results.
A typical scenario that may create issues could be as follows:
1.	NF Service Consumer sends a first GET request towards a NF Service Producer, including certain query parameters in the HTTP request, that result into retrieving a resource representation that contains a subset of the data that the NF Service Producer holds under such resource. When such subset refers to returning just some of the elements of an array, rather than the entire array, then the content of the array will differ between consumer and producer.
2a.	The NF Service Consumer sends a subsequent PATCH request towards the NF Service Producer, with the intention to modify a given element of the array (specified by the array index, per the JSON Pointer syntax). This results into the server modifying a wrong element in the array, given that the NF Service Producer contains a different array.
2b.	Alternatively, the NF Service Consumer may subscribe to be notified by the NF Service Producer when a given resource representation has changed. When the NF Service Producer detects such a change, it sends a notification that may include a reference to an array index, which may be different than the array index kept by the NF Service Producer.
Another scenario that may lead to incorrect array updates is:
1.	Two different NF Service Consumer sends a GET request towards a NF Service Producer to retrieve the representation of a certain resource.
2.	A first NF Service Consumer NF1 sends a PATCH request towards the NF Service Producer, with the intention to delete a given element of the array (specified by the array index, per the JSON Pointer syntax). This results in some of the array indexes being changed (of those elements placed after the deleted element)
3.	A second NF Service Consumer NF2, sends another PATCH request towards the NF Service Producer, to modify any of the elements of the array whose index was affected by the previous operation done by NF1. This results in modifying unintendedly the wrong array element.
The design of 5GC SBI APIs should take into account these scenarios and provide mechanisms to avoid unintended modifications of array elements, when they are referred by their position index in the array.
To achieve these, both NF Service Consumer and Producer (taking the role of HTTP client and server) should ensure that any resource update takes place on a known and current resource representation, based on the content of ETag values sent along with resource representations by the resource owner.
If an NF Service Consumer needs to cache a resource representation received from an NF Service Producer (i.e. the JSON information received in an HTTP response message), it shall use the exact same representation of arrays as received from the service producer.
When sending notifications or modifications whose semantics is based on the JSON Pointer syntax, the sending NF shall use the exact same representation of arrays as previously signalled in a previous interaction with the receiver of such notifications/modifications.

* * * End of Changes * * * *
