

	
3GPP TSG-CT WG4 Meeting #101-bis-e	C4-210157
E-Meeting, 25th – 29th January 2021 												 Revision of 007, 156

Source:	Huawei
Title:	Pseudo-CR on Clarifications to the basic HTTP/3 notions
Spec:	3GPP TR 29.893v1.6.0
Agenda item:	6.1.1 (FS_QUIC)
Document for:	Decision

1. Reason for Change
Currently, TR 29.893 does not fully explain fundamental QUIC concepts, like relation between UDP datagram, QUIC packets and QUIC frames. Also, the usage of the Offset field in the STREAM frame is not explained at all.
Other ambiguities in clauses 5.3.7, 5.3.18 and 6.1 are also clarified.
2. Proposal
It is proposed to agree the following changes to 3GPP TR 29.893v1.6.0.

* * * First Change * * * *
[bookmark: _Toc34228649][bookmark: _Toc43488759][bookmark: _Toc50359388][bookmark: _Toc57222004]5.3.2	Framing and Multiplexing
[bookmark: _GoBack]Provisions in this clause are based on IETF draft-ietf-quic-transport [5]. QUIC endpoints communicate by exchanging QUIC packets in UDP datagrams. One or more QUIC packets can be encapsulated in a single UDP datagram. QUIC packets may have long or short headers, for packets sent prior or after the completion of version negotiation and establishment of 1-RTT keys respectively. A sender multiplexes one or more QUIC frames with of the same or different type(s) into a QUIC packet. QUIC labels the boundary of each frame with an offset field, which helps to carry different messages. The header contains only a limited set of fields, including Destination Connection ID field (see clause 5.3.7) and encrypted Packet Number field. Data sent by an application is encapsulated in STREAM frames which are carried in 0-RTT packets, if send as early data during the handshake, or afterwards in 1-RTT packets. An endpoint uses the Stream ID and Offset fields in STREAM frames to place data in order. The usage of the Offset field is further explained by the below example.
EXAMPLE:	Let's say a QUIC transport entity sends data via three STREAM frames. The first one is e.g. 10 octets long, starts at offset 0 and ends at offset 9. The second one is e.g. 20 octets long, starts at offset 10 and ends at offset 29. The third one is e.g. 7 octets long, starts at offset 30 and ends at offset 36. Let's also assume these frames are carried by separate QUIC packets A, B and C. In a sunny day scenario all three packets arrive at the receiving entity, which successfully acknowledges them. In a rainy day scenario, retransmissions are necessary. Let's say, packets A and B were lost and only packet C is delivered and acknowledged. The sender obviously needs to retransmit the content with offset 0..9 and 10..29. The sender can do this either by resending these two frames as initially sent (i.e. the three frames) or by sending a single, 10+20=30 octets long frame with offset 0..29.
This is one of the differences with TCP, as TCP only provides one stream and all data therefore are delivered in order, which means multiplexing is not supported in TCP. A sender can wait for a short period of time to bundle multiple frames into the same QUIC packet, e.g. to minimize the computational costs of packets sending.
QUIC supports multiple parallel data streams multiplexed on a single QUIC connection. Streams, which can be unidirectional or bidirectional in QUIC provide a lightweight, ordered byte-stream abstraction to an application. Packets transmitted in each stream use Authenticated Encryption with Additional Data (AEAD) to provide confidentiality and integrity protection. Streams can be long-lived, even during the lifetime of a connection to increase the reusability and limit the cost of opening stream (See IETF draft-ietf-quic-transport [5]). An endpoint of a bidirectional stream can terminate one direction and even encourage prompt termination in the opposite direction.
For each stream QUIC now only supports reliable and in-order delivery, but the implementations may choose to offer the ability to deliver data out of order. However, the QUIC layer is capable of delivering to the higher layer each stream independently as the streams in QUIC are independent of each other, thus it avoids blocking the delivery of any of the other streams when a packet loss contains only part of a stream which would be the case for HTTP/2 over TCP. Note that to achieve this efficiency the implementation needs to pay attention to pack payload from one stream into a single QUIC packet.
The HTTP/3 mapping for QUIC IETF draft-ietf-quic-http [7] utilizes this stream concept when realizing the different HTTP/2 (See IETF RFC 7540 [13]) streams. HTTP/3 also had to improve the HTTP header compression scheme HPACK (See IETF RFC 7541 [14] into QPACK (See IETF draft-ietf-quic-qpack [10]). With these changes HTTP can deliver independent requests and responses in the order they are successfully delivered to endpoints, without head of line blocking between HTTP streams which would be the case for HTTP/2 over TCP.

* * * 2nd Change * * * *
[bookmark: _Toc34228654][bookmark: _Toc43488764][bookmark: _Toc50359393][bookmark: _Toc57222009]5.3.7	Connection ID
QUIC uses two a sets of connection IDs, one connection ID for the server and one connection ID for the client to identify a particular connection for an endpoint. During the handshake, QUIC packet with the long header is used to exchange the connection ID that each endpoint assigned. The endpoint is allowed to change the own connection ID to another available one at any time during the connection without any interruption in the transmission. This solution makes the connection not hard bound to a particular 5-tuple (Source and Destination IP, protocol, and source and destination port), instead the connection can be moved between different network interfaces on client and with some limitations on the server side. The protocol has a feature for migrating connections from using one 5-tuple to another, see clause 5.3.8. When knowingly changing the used 5-tuple a new connection ID is necessarily to be used. The peers exchange additional connection IDs when needed to ensure that the peer have one or more previously unused CIDs that can be used in case of connection migration. The middlebox is difficult to correlate the received packet to the connection as the procedure used to changing connection is in encryption.
The length of connection ID is variable, and it provides certain flexibility in how the implementers realize network equipment architecture, e.g. front-end load-balancers, for QUIC.

[bookmark: _Toc34228665][bookmark: _Toc43488775][bookmark: _Toc50359404][bookmark: _Toc57222020]* * * 3rd Change * * * *
5.3.18	Running atop of UDP
When comparing HTTP/3 with HTTP/2, one should compare the complete protocol stack. HTTP/2 runs either on top of TCP or on top of TLS/TCP, while HTTP/3 runs on top of QUIC/UDP, where QUIC natively incorporates TLS. In other words, the difference goes well beyond replacing TCP with UDP, as TCP is mainly replaced by QUIC/UDP from the transport layer point of view. The purpose for using UDP in HTTP/3 stack QUIC protocol uses UDP for packet encapsulation, this design should not be understood to use UDP encapsulation to replace TCP in HTTP/2, and instead, the purpose is to ensure thate QUIC packets passing transparently through legacy middleboxes, including OS, router, firewall and etc., transparently. However, due to DDoS attack avoidance, or other network operating consideration, network operators configure the network to limit the peak rate of UDP packets, which will heavily impact the exact performance behavior of QUIC and delay the popularity of QUIC deployment in particular districts. It could be a kind of deadlock for QUIC traffic being useding in internet until HTTP/3 is wildly accepted. For SBI being used within Telco network, this will not be a big issue.

* * * 4th Change * * * *
[bookmark: _Toc34228677][bookmark: _Toc43488787][bookmark: _Toc50359416][bookmark: _Toc57222032]6	HTTP/3
[bookmark: _Toc34228678][bookmark: _Toc43488788][bookmark: _Toc50359417][bookmark: _Toc57222033]6.1	Introduction
This clause will contain description about the mapping and usage of HTTP/3 including some of the not so well understood/documented aspects.
Figure 6.1-1 provides an overview of the HTTP/2 and HTTP/3 protocol stacks, highlighting key features of the HTTP and transport layers. See clause 5.3 for a detailed description of the QUIC features.

Figure 6.1-1 HTTP/3 vs. HTTP/2 protocol stacks
With HTTP/2 protocol stack, TLS is used conditionally when the security is not provided by other means.
With HTTP/3 protocol stack, TLS is integrated into QUIC and is used always, i.e. TLS is mandatory.

* * * End of Changes * * * *

image1.emf
ApplicationTCPIPL2TLSHTTP/2ApplicationUDPIPL2QUICHTTP/3HTTP/2 layer Binary framing Multiplexing (frames associated to streams) Header compression (static and dynamic tables): HPACK Stream based transfer with priority and stream concurrency control Flow control at connection and stream levels Server Push HTTP/3 layer binary framing (modified HTTP frames) Header compression (static and dynamic tables): QPACK Server Push 1 HTTP transaction (without server push) maps to 1 QUIC streamHTTP/2 over TLS/TCP (TCP connection)HTTP/3 over QUIC/UDP (QUIC connection/UDP)QUIC layer binary framing (QUIC frames) Multiplexing (QUIC streams) Protected transport (TLS) TCP-like retransmission and congestion control Stream based transfer with priority and stream concurrency control Flow control at connection and stream levelsHTTP/2 protocol stackHTTP/3protocol stack

Microsoft_Visio_Drawing1.vsdx
HTTP/2 layer
Binary framing
Multiplexing (frames associated to streams)
Header compression  (static and dynamic tables): HPACK
Stream based transfer with priority and stream concurrency control
Flow control at connection and stream levels
Server Push
HTTP/3 layer
binary framing (modified HTTP frames)
Header compression (static and dynamic tables): QPACK
Server Push
1 HTTP transaction (without server push) maps to 1 QUIC stream
HTTP/2 over TLS/TCP
(TCP connection)
HTTP/3 over QUIC/UDP
(QUIC connection/UDP)
QUIC layer
binary framing (QUIC frames)
Multiplexing (QUIC streams)
Protected transport (TLS)
TCP-like retransmission and congestion control
Stream based transfer with priority and stream concurrency control
Flow control at connection and stream levels
HTTP/2
protocol stack
HTTP/3
protocol stack

