
3GPP TSG-CT WG3 Meeting #98Bis
C3-186227
Vilnius, Lithuania, 15-19 October 2018                                                           

Source:
Ericsson
Title:
Discussion on CAPIF data model
Agenda item:
15.12
Document for:
Discussion and Agreement
1
Introduction

This DP discusses several aspects of current data model in several APIs and the proposed changes to existing data models.
2
Discussion
2.1
Service publish and discover

Currently the CAPIF_Publish_Service_API has the following data model.
[image: image1.png]
The APF collects all AEFs’ service API information (this is out of the scope of TS 29.222) and publishes them to the CAPIF core. And each service API may contain multiple interface descriptions as depicted above. 
SA3 requires below text in TS 33.122, 6.3.1:

…

2.
The API invoker may send CAPIF-2/2e security capability information to the CAPIF core function in the Security Method Request message, indicating the list of security methods that the API invoker supports over CAPIF-2/2e reference point for each AEF.
3.
The CAPIF core function shall select a security method to be used over CAPIF-2/2e reference point for each requested AEF, taking into account the information from the API invoker in step 2, access scenarios and AEF capabilities.
Thus, the security method should be per AEF, instead of per interface. 
Besides, there is concern regarding current service publishment data model. Different AEFs may support different API version (v1, v2, …), protocol version (HTTP/1.1 or HTTP/2). Even within one AEF, according to 29.501, 4.3.1.5 principle, the AEF who is providing the service shall maintain different API versions during certain period. Without the AEF information in the data model, it is hard to utilize serviceAPI data structure to expose multiple API versions for the same API which will create concept confusion and data duplication (e.g. API name).
Proposal 1: The data model should be changed to have AEF profile under serviceAPI.
Considering different AFs may use different API version of the same API for certain period and the recommendation from CT plenary (CP-182239) to have homogeneous handling of the API version number and API specification, especially when some of the APIs are exposed to non-3GPP external networks, the principle mentioned in 29.501, 4.3.1.5 should be applies for northbound API as well.
Proposal 2: Each AEF profile should contain multiple API versions and its expiration time.

Then the serviceAPI data structure should include the basic information which is common for all AEFs (e.g. API name). For each AEF, it may support multiple security methods and multiple interfaces (e.g. IP1:port1 and IP2:port2) which are exposing the same API.
Note: in NRF service, one NF may register multiple IP end points for one service instance.

And the commType (request/response or subscribe/notify) is not suitable to be placed either at AEF level or serviceAPI level, because under one service API, different resources may have different communiation types. The relative URIs and its associated operations should also be put into the resource level. 
Proposal 3: Add new data structure for API resources under AEF profile data structure.
Considering all above changes, the proposed new data model will look like:

[image: image2.png]
For CAPIF_Discover_Service_API, current query parameters include interface description. It is not likely the API invoker knows the interface details (e.g. IP address) for the AEF. The interface details should be included as part of the query result.
Proposal 4: Remove interface description from the query parameters in service discovery API.

2.2
Service logging and audit
In chapter 2.1, it is explained that one AEF may expose multiple interfaces for service API. The same applies for the API invoker as well, i.e. one API invoker may use different interfaces (source addresses) to invoke the same or different service APIs. Therefore, the data model in logging function should move the {IP, port} into the Log data structure. Then it is possible to use the same Invocationlog to log data for different APIs; otherwise it requires several invocationLogs to do that which is not necessary.
Proposal 5: Put source interface description in Log data structure and make the corresponding change in query parameter of Audit function.
2.3
Security API

Current data model of security API includes API details including IP interface description. It is not likely that the API invoker knows the interface details (e.g. IP address) during security method negotiation because SA3 requires that the service discovery (in order to retrieve the API details including IP address + port) is performed after calling security API, see subclause 6.3 of TS 33.122:

After successful authentication between API invoker and CAPIF core function, the CAPIF core function shall decide whether the API invoker is authorized to perform discovery based on API invoker ID and discovery policy.
Also there is a requirement in subclause 6.3 (step 2, see below) of TS 33.122 to have security preference per AEF. 
2.
The API invoker may send CAPIF-2/2e security capability information to the CAPIF core function in the Security Method Request message, indicating the list of security methods that the API invoker supports over CAPIF-2/2e reference point for each AEF.
Then what kind of information can be known in advance by the API invoker during security method negotiation? Here for instance, AEF ID (e.g. SCEF/NEF ID) can be known by the API invoker. This is similar as SCS/AS ID which is published by some other means (e.g. 3rd party AS and operator provided information by SLA).
Proposal 6: Use AEF ID instead of Interface Description for the security method negotiation.
2.4
Invoker Management API
TS 23.222 states that before onboarding:

The API invoker has visibility to APIs information (e.g., API catalogue or dashboard - central place for the API provider to manage which APIs are displayed, giving API invokers the ability to enroll for).

And during onboarding, the CAPIF core authorizes the API invoker with the following information:

The authorization information and the list of APIs and the types of APIs that the API invoker can access subsequent to successful onboarding may also be created.  

Since there is dedicated API for service disovery, here the list of APIs and types of APIs requested by the API invoker and authorized by and CAPIF core function should be limited to a high level information (e.g. the API name) without further details of the APIs, otherwise the onboarding process has complete function overlapping with the service discovery API. Besides, the security method between the AEF and API invoker shall be negotiated by Security API, currently it is also included as part of the onboarding process.

Proposal 7: keep the API information in minimum in the CAPIF_API_Invoker_Management_API

3. Proposal
It is proposed to make the corresponding changes to CAPIF APIs in Vilnius meeting.
