3GPP TSG CT WG4 Meeting #86-bis
C4-187102
3GPP TSG-CT WG3 Meeting #98Bis
C3-186064
Vilnius, Lithuania, 15-19 October 2018

Source:
Nokia, Nokia Shanghai-Bell
Title:
Versioning of OpenAPI files
Agenda item:
15.1 (CT3) / 7.2.1.2 (CT4)
Document for:
DISCUSSION
Introduction

CT3 and CT4 receive the reply LS (C3-186xxx/C4-187297) on API specification and API version number maintenance from CT plenary.

The LS contains the following statement:

It has to be noted that the current API version number pattern was questioned and there was a proposal to remove the Release indication ("Rn") from the API version number. It would be good to clarify why the current format has been defined as such in the TS 29.501. And this would help to clarify the maintenance of this API version number.

The present contribution aims to provide related explanation and also explore and explore possible alternatives.

It is suggested to use this contribution as a basis for a related reply to CT.
It is also suggested to re-discuss possible alternatives based on this contribution and if CT4 desires a change, to draft a CR against TS 29.501 to reflect those conclusions.
High Level Requirements for Versioning

1. Distinguishes versions that are not backward compatible with each other.

(Rational: In the NRF inquiry and in HTTP-level request routing, this information needs to be considered. For backward compatible changes, interoperability is guaranteed with other mechanisms.)

2. Compatibility with 3GPP working procedures to assign TS version numbers. (Rational: OpenAPIs and their related procedures are standardised in 3GPP TS following those rules.)
In particular: 3GPP uses a release concept. New features can only be added to the latest release. Essential corrections are possible in earlier releases (see example in Figure 1)
3. Assign a unique version identifier for each OpenAPI file version generated according to 3GPP working procedures
Additional Evaluation criteria

4. Versioning reflects evolution of OpenAPI file, i.e. increased numbers indicate additional features and/or corrections

5. Procedural Effort for 3GPP working groups

6. Keep apart development phase and stable OpenAPI file versions

7. Ease of mapping TS versions and OpenAPI versions
8. Alignment with Industry standards "semantic versioning" (see https://semver.org/):
Given a version number MAJOR.MINOR.PATCH, increment the:

1. MAJOR version when you make incompatible API changes,

2. MINOR version when you add functionality in a backwards-compatible manner, and

3. PATCH version when you make backwards-compatible bug fixes.

9. Possibility to reflect operator-specific extensions and support of optional features

Figure 1: Example TS version tree according to 3GPP working procedures

[image: image1.emf]15.0.0:

F1, F2

15.1.0:

F1, F2,

C1, C2

15.2.0:

F1, F2,

C1, C2, C3

15.3.0:

F1, F2,

C1, C2, C3,

C4

16.0.0:

F1, F2,F3

C1, C2, C3

16.1.0:

F1, F2,F3

C1, C2, C3,

C4, C5

16.2.0:

F1, F2,F3, F4

IF5

,C1, C2,

C3, C4, C5

15.4.0:

F1, F2,

C1, C2, C3,

C4, C6

16.3.0:

F1, F2,F3,

IF4,C1, C2,

C3, C4, C5;

C6

17.0.0:

F1, F2,F3, F4

IF5,F6, C1,

C2, C3, C4,

C5; C6

17.1.0:

F1, F2,F3, F4,

IF5,F6, F7, C1,

C2, C3, C4, C5;

C6

17.2.0:

F1, F2,F3, F4,

IF5,F6, F7, C1,

C2, C3, C4, C5;

C6, C7

TS Version Tree Plenary #

N

N+1

N+2

N+3

N+4

N+5

N+6

N+7

Legend

:

Fx: Feaure x not affecting OpenAPI

Cx: Correction x not affecting OpenAPI

Fx: Backward-compatible Feaure x

affecting OpenAPI

IFx: Backward-incompatible Feaure x

affecting OpenAPI

Cx: Backward-compatible Correction x

affecting OpenAPI

Current OpenAPI Versioning System
From TS 29:501:

API version numbers shall consist of at least 4 fields, following a MAJOR.RELEASE.MINOR.PATCH pattern, in which the MAJOR, MINOR and PATCH field values are set according to the Semantic Versioning Specification [17] with exceptions for 3GPP releases under development. Optionally, additional fields can be added after the fourth field.

-
2nd Field (RELEASE):
This field corresponds to a 3GPP release and indicates whether the 3GPP release is still under development.

-
For a 3GPP release that is not yet frozen (i.e. still under development), the field shall take the form "PreRn", where n is the planned 3GPP release number. It indicates that the version is unstable and might not satisfy the intended compatibility requirements as denoted by its associated normal version.

-
For a 3GPP release that is frozen, the field shall take the form "Rn", where n is the 3GPP release number. When the first MAJOR, MINOR or PATCH change in a 3GPP release is applied to an API, this number shall be set according to that 3GPP release. When a 3GPP release is being frozen and a "PreRn" release field was assigned to an API, the RELEASE field shall be converted to "Rn".

NOTE 1:
If no change is applied to an API in a new 3GPP release, the API version number will maintain the RELEASE field of the last 3GPP release where it was changed.
Figure 2: Current OpenAPI Versioning System applied to example TS version tree in figure 1.

[image: image2.emf]1.R15.0.0:

F1

1.R15.1.0:

F1, C1

1.R15.3.0:

F1,

C1, C4

1.PreR16.0.0:

F1, F3

C1

1.PreR16.1.0:

F1, F3, F4

C1,C4, C5

2

.R16.0.0:

F1, F3, F4

IF5

,C1, C4,

C5

1.R154.0:

F1, C1, C4,

C6

2.R16.1.0:

F1, F3, F4,

IF5,C1, C4,

C5; C6

2.PreR17.0.0:

F1, F3, F4

IF5,F7, C1,

C4, C5, C6

2.R17.0.0:

F1, F3, F4,

IF5,F7C1,

C4, C5, C6

OpenApi freeze

OpenApi freeze

OpenApi freeze

Plenary #

N

N+1

N+2

N+3

N+4

N+5

N+6

N+7

1st Rel17 TS version

contains 2.R16.0.0

because there are no

OpenAPI changes

TS version

contains 1.R15 1.0

because there are

no OpenAPI

changes

Proposal 1: Major version plus TS version
Format: MAJOR.RELEASE.MINOR.PATCH
MAJOR is incremented for backward-incompatible changes

RELEASE.MINOR.PATCH are set to same numbers as first TS containing that OpenAPI file version. (They are not incremented if OpenAPI file version does not change in a new TS version
Figure 3: Proposal 1: applied to example TS version tree in figure 1.

[image: image3.emf]1.15.0.0:

F1

1.15.1.0:

F1, C1

1.15

.3

.0:

F1,

C1, C4

1.16.0.0:

F1, F3

C1

1.16.1.0:

F1, F3, F4

C1,C4, C5

2

.

16.2

.0:

F1, F3, F4,

IF5

,C1, C4,

C5

1.15.4.0:

F1, C1, C4,

C6

2.R16.3.0:

F1, F3, F4

IF5,C1, C4,

C5; C6

2.R17.1.0:

F1, F3, F4,

IF5,F7, C1,

C4, C5, C6

OpenApi freeze

OpenApi freeze

OpenApi freeze

Plenary #

N

N+1

N+2

N+3

N+4

N+5

N+6

N+7

Version skipped

because no changes

in OpenAPI file

3rd digit not reset

after increment of

first

3rd digit starts with 1

because first Rel-17 TS

version still contains

OPenAPI 2.16.2.0

OpenAPI

freeze not

marked

No new version as release

freeze is not marked and there

were no new corrections or

features

Version skipped

because no changes

in OpenAPI file

Proposal 2: 3 Digit: MAJOR.RELEASE.MINOR+PATCH
Format: MAJOR.RELEASE.MINOR+PATCH
MAJOR is incremented for backward-incompatible changes

RELEASE is incremented for first backward compatible change in a 3GPP Release only
MINOR+PATCH is incremented for all subsequent Minor and Patch changes in Release.
Figure 4: Proposal 2: applied to example TS version tree in figure 1.

[image: image4.emf]1.0.0:

F1

1.0.0:

F1, C1

1.0.1:

F1,

C1, C4

1.1.0:

F1, F3

C1

1.1.1:

F1, F3, F4

C1,C4, C5

2

.0.0

F1, F3, F4

IF5

,C1, C4,

C5

1.0.2:

F1, C1, C4,

C6

2.0.1:

F1, F3, F4

IF6,C1, C4,

C5; C6

2.1.0:

F1, F3, F4,

IF5,F7, C1,

C4, C5, C6

OpenApi freeze

OpenApi freeze

OpenApi freeze

Plenary #

N

N+1

N+2

N+3

N+4

N+5

N+6

N+7

Version skipped

because no changes

in OpenAPI file

OpenAPI

freeze not

marked

No new version as release

freeze is not marked and there

were no new corrections or

features

Only 3rd digit incremented

despite the addition of

functionality

Version skipped

because no changes

in OpenAPI file

Proposal 3: 3-Digit Semantic Versioning

Given a version number MAJOR.MINOR.PATCH, increment the:

1.
MAJOR version when you make incompatible API changes,

2.
MINOR version when you add functionality in a backwards-compatible manner, and

3.
PATCH version when you make backwards-compatible bug fixes.

It needs to be assumed that the MAJOR and MINOR changes due to added functionality are only applied to the latest Release. Once work on a new release has started, addition of functionality is no longer permitted and all backward-compatible FASMO corrections need to be considered MINOR.
(This seems relatively aligned with 3GPP working procedures, although real experience from the past showed that FASMO correction after Release freeze even required the definition of new supported features. Further, work on new releases could begin while exception sheets still permit the addition of features to old releases)

It also needs to be assumed that no PATCH changes are applied to a new release only before any MAJOR and MINOR changes.
(This case seems exceptional but not ruled out by 3GPP working procedures.)

Figure 5: Proposal 3: applied to example TS version tree in figure 1.

[image: image5.emf]1.0.0:

F1

1.0.0:

F1, C1

1.0.1:

F1,

C1, C4

1.1.0:

F1, F3

C1

1.2.0:

F1, F3, F4

C1,C4, C5

2

.0.0

F1, F3, F4

IF5

,C1, C4,

C5

1.0.2:

F1, C1, C4,

C6

2.0.1:

F1, F3, F4

IF6,C1, C4,

C5; C6

2.1.0:

F1, F3, F4,

IF5,F7, C1,

C4, C5, C6

OpenApi freeze

OpenApi freeze

OpenApi freeze

Plenary #

N

N+1

N+2

N+3

N+4

N+5

N+6

N+7

Version skipped

because no changes

in OpenAPI file

OpenAPI

freeze not

marked

No new version as release

freeze is not marked and there

were no new corrections or

features

Several minor versions for the

same release if functionality is

added in several steps

Version skipped

because no changes

in OpenAPI file

Proposal 4: 3-Digit Semantic Versioning with reserved ranges per release
Given a version number MAJOR.MINOR.PATCH, increment the:

1.
MAJOR version when you make incompatible API changes,

2.
MINOR version when you add functionality in a backwards-compatible manner, and

3.
PATCH version when you make backwards-compatible bug fixes.

For the MINOR versions, a new range is used for each new release without backward incompatible change.
For the PATCH version, a new range would also be used for each new release if the PATCH version needs to be incremented before the MAJOR or MINOR version.
Figure 5: Proposal 4: applied to example TS version tree in figure 1.

[image: image6.emf]1.0.0:

F1

1.0.0:

F1, C1

1.0.1:

F1,

C1, C4

1.100.0:

F1, F3

C1

1.101.0:

F1, F3, F4

C1,C4, C5

2

.0.0

F1, F3, F4

IF5

,C1, C4,

C5

1.0.2:

F1, C1, C4,

C6

2.0.1:

F1, F3, F4

IF6,C1, C4,

C5; C6

2.100.0:

F1, F3, F4,

IF5,F7, C1,

C4, C5, C6

OpenApi freeze

OpenApi freeze

OpenApi freeze

Plenary #

N

N+1

N+2

N+3

N+4

N+5

N+6

N+7

Version skipped

because no changes

in OpenAPI file

OpenAPI

freeze not

marked

No new version as release

freeze is not marked and there

were no new corrections or

features

Several minor versions for the

same release if functionality is

added in several steps

New range of minor

versions for the new

release

New range of minor

versions for the new

release

Version skipped

because no changes

in OpenAPI file

Proposal 5: Major version plus Operator specific versioning
Format: MAJOR.OPERATORSPECIFIC

Only versions deployed by an operator obtain a number with a format selected by the operator.
Detailed OpenApi versions can in addition be expressed via the TS version in which the OpenAPI file is contained (that can also be documented in the external docs field of the OpenAPI file)

Rational:

· An operator will not deploy all OpenAPI versions. An operator is rather likely to stay on one release branch of the OpenAPI until he desires features added from the new release, and will then likely jump to a recent version in the new 3GPP release where those features are included.
· Many features are optional to support in 3GPP specifications and a 3GPP-Assigned versioning can thus not reflect if they are supported.

· An operator may add proprietary features that cannot be reflected in 3GPP versioning

· This proposal thus allows the operator to easily look up versions required by its deployment strategy in the NRF.
· MAJOR version is important for inter-operator interworking

Figure 7: Proposal 5: applied to example TS version tree in figure 1.

[image: image7.emf]F1

1.0.0

F1, C1

1.0.1

F1,

C1, C4

F1, F3

C1

F1, F3, F4

C1,C4, C5

F1, F3, F4

IF5

,C1, C4,

C5

F1, C1, C4,

C6

F1, F3, F4

IF5,C1, C4,

C5; C6

F1, F3, F4,

IF5,F7, C1,

C4, C5, C6

OpenApi freeze

OpenApi freeze

OpenApi freeze

Plenary #

N

N+1

N+2

N+3

N+4

N+5

N+6

N+7

No new version as release

freeze is not marked and there

were no new corrections or

features

2

.

1.0

F1, F3,

IF5

,

C1, C4, C5,

C6

2

.

0.0

:

F1,

IF5

,C1,

C4,

F3 an F4

omitted

F3 an

propietary F8

added

2.2.0:

F1, F3, IF5,

F7, F8, C1,

C4, C5, C6

Comparison of proposals
	
	Current Versioning
	Proposal 1
	Proposal 2
	Proposal 3
	Proposal 4
	Proposal 5

	1. Distinguishes versions that are not backward compatible with each other
	yes
	yes
	yes
	yes
	yes
	yes

	2. Compatibility with 3GPP working procedures
	yes
	yes
	yes
	Partly:

Limitations:

1. No work on new releases while exception sheets allow additions to old releases.

2. No PATCH changes before MINOR or MAJOR changes are possible only in a new release.
	yes
	yes

	3. unique version identifier for each OpenAPI file version
	yes
	yes
	yes
	yes
	yes
	Only versions deployed by an operator. In addition, TS version can be used.

	
	
	
	
	
	
	

	4. Versioning reflects evolution of OpenAPI file
	yes
	yes
	yes
	yes
	yes
	yes

	5. Procedural Effort for 3GPP working groups
	High:
All CRs need to mark whether they are MAJOR, MINOR and PATCH, and CR to increment version needs to be generated based on that.
	Low:
Only MAJOR changes and related version updates need to be handled by CR, rest could be delegated to MCC.
	Low:
Only MAJOR changes and related version updates need to be handled by CR, rest could be delegated to MCC..
	High:
All CRs need to mark whether they are MAJOR, MINOR and PATCH, and CR to increment version needs to be generated based on that.
	High:
All CRs need to mark whether they are MAJOR, MINOR and PATCH, and CR to increment version needs to be generated based on that.
	Lowest

Only version updates for MAJOR changes need to be handled by CR

	6. Keep apart development phase and stable OpenAPI
	Yes
	No
	No (possibility to amend proposal e.g. with adding "-alpha" to early versions)
	No (possibility to amend proposal e.g. with adding "-alpha" to early versions)
	No (possibility to amend proposal e.g. with adding "-alpha" to early versions)
	Up to operator policy

	7. Ease of mapping TS versions and OpenAPI versions
	Middle: Release visible
	Best
	Complicated, but: Release could be derived from MINOR version.
	Most Complicated
	Complicated, but: Release could be derived from version ranges.
	Up to operator policy.

TS version in ExternalDocs field could help

	8 Alignment with "semantic versioning"
	Middle: MAJOR.MINOR.PATCH are used accoding to intention, but RELEASE inserted
	Not Aligned:
4 Fields, but only MAJOR Field used according to semantic versioning
	Middle:

3 digit, but only MAJOR Field used fully according to semantic versioning
	Mostly:

Assumption about only PATCH changes in frozen releases could lead to some deviations.
	Mostly:

3 fields used according to semantic versioning principles apart from range.
	Up to operator policy

	9. Possibility to reflect support of optional features and proprietary extensions
	Difficult:

Requires operator-specific extension of the versioning
	No
	Difficult:

Requires operator-specific extension of the versioning
	Difficult:

Requires operator-specific extension of the versioning
	Difficult:

Requires operator-specific extension of the versioning
	Yes

Conclusions

1. Proposal 3 (Pure semantic versioning) is not fully aligned with the 3GPP working procedures and not recommended

2. Proposal 5 has the advantage to be well aligned with typical operator deployment strategies and to avoid complicated 3GPP procedures.
_1600189941.vsd
1.R15.0.0:
F1

1.R15.1.0:
F1, C1

1.R15.3.0:
F1, C1, C4

1.PreR16.0.0:
F1, F3  C1

1.PreR16.1.0:
F1, F3, F4  C1, C4, C5

2.R16.0.0:
F1, F3, F4 IF5, C1, C4, C5

1.R154.0:
F1, C1, C4, C6

2.R16.1.0:
F1, F3, F4, IF5, C1, C4, C5; C6

2.PreR17.0.0:
F1, F3, F4 IF5, F7, C1, C4, C5, C6

2.R17.0.0:
F1, F3, F4, IF5, F7 C1, C4, C5, C6

OpenApi freeze

OpenApi freeze

OpenApi freeze

Plenary #

N

N+1

N+2

N+3

N+4

N+5

N+6

N+7

_1600191320.vsd

_1600194470.vsd

_1600265227.vsd

_1600191344.vsd

_1600191274.vsd

_1600189709.vsd
15.0.0:
F1, F2

15.1.0:
F1, F2, C1, C2

15.2.0:
F1, F2, C1, C2, C3

15.3.0:
F1, F2, C1, C2, C3, C4

16.0.0:
F1, F2, F3  C1, C2, C3

16.1.0:
F1, F2, F3  C1, C2, C3, C4, C5

17.2.0:
F1, F2, F3, F4, IF5, F6, F7, C1, C2, C3, C4, C5; C6, C7

16.2.0:
F1, F2, F3, F4 IF5, C1, C2, C3, C4, C5

15.4.0:
F1, F2, C1, C2, C3, C4, C6

16.3.0:
F1, F2, F3, IF4, C1, C2, C3, C4, C5; C6

17.0.0:
F1, F2, F3, F4 IF5, F6, C1, C2, C3, C4, C5; C6

17.1.0:
F1, F2, F3, F4, IF5, F6, F7, C1, C2, C3, C4, C5; C6

TS Version Tree

Plenary #

N

N+1

N+2

N+3

N+4

N+5

N+6

N+7

Legend:
Fx: Feaure x not affecting OpenAPI
Cx: Correction x not affecting OpenAPI
Fx: Backward-compatible Feaure x affecting OpenAPI
IFx: Backward-incompatible Feaure x affecting OpenAPI Cx: Backward-compatible Correction x affecting OpenAPI

