Page 1

3GPP TSG-CT WG3 Meeting #96
C3-182198
Kunming, China, 16 April - 20 April 2018
	5PCR-Form-v0.3

	PSEUDO CR

	
	

	(
	Spec. number:
	29.222
	Current version:
	0.1.0
	(

	Title:
(
	Notifications

	
	

	Source:
 (
	Samsung Electronics

	
	

	Work item code:
(
	CAPIF-CT
	

	
	

	Reason for (

change:

	Following editor's note in subclause 6.6
Editor´s note:
This subclause will describe the notifications mechanisms supported by CAPIF. If the WebSocket protocol related standardisation work is not completed when this TS is sent for approval, this option will be moved to Rel-16.

	
	

	Summary of
change: (
	The contribution introduces 2 mechanisms for notification delivery – webhooks and websockets along with a notification test event.

	
	

	Consequences (
if not agreed:
	Incomplete specification.

	
	

	Other specs (
	

	affected(if any):
	

	
	

	
	

	Other comments (
	

Additional discussion(if needed):
…

Proposed changes:
*** 1st Change ***
6.2.2
Referenced structured data types

Editor's Note:
Structured data types applicable to several CAPIF APIs will be defined in this subclause.

6.2.2.x
Type: TestNotification

TestNotification is a dummy notification used to confirm if the notification mechanism is working. It shall be supported if the "Notification_test_event" feature is supported.

Table 6.2.2.x-1: Definition of TestNotification data type

	Attribute name
	Data type
	Cardinality
	Description

	subscription
	Link
	1
	Link of the subscription resource with which the dummy notification is related.

6.2.2.y
Type: WebsockNotifConfig

WebsockNotifConfig represents configuration for the delivery of notifications over Websockets. It shall be supported if the "Notification_websocket" feature is supported.

Table 6.2.2.y-1: Definition of WebsockNotifConfig data type

	Attribute name
	Data type
	Cardinality
	Description

	websocketUri
	Link
	0..1
	Set by the CAPIF core function to inform the Subscribing functional entity of a URI where CAPIF core function intends to receive the Websocket connection.

(NOTE 1)

	requestWebsocketUri
	boolean
	0..1
	Set by the Subscribing functional entity to request Websocket delivery of the notifications.

(NOTE 2)

	NOTE 1:
A Websocket URI should use the scheme "wss" (Websocket Secure) for encrypted delivery and may use the scheme "ws" (Websocket) for unencrypted delivery. If the WebsockNotifConfig data type is used in an HTTP response, this attribute shall be present. If the WebsockNotifConfig data type is used in an HTTP request, this attribute shall not be set by the Subscribing functional entity in a request to create a resource, and shall not be modified by the Subscribing functional entity in a request to modify a resource.

NOTE 2:
In a request to create or update a subscription resource, this attribute shall be set to true by the Subscribing functional entity to request the CAPIF core function to provide a Websocket URI for the delivery of notifications, and shall be absent otherwise. In any HTTP response, this attribute shall retain the value that was provided upon resource creation or update.

*** 2nd Change ***

6.6
Notifications

6.6.1
General

The functional entities shall support the delivery of notifications using a separate HTTP connection towards an address as described in subclause 6.6.2.
The functional entities may support testing a notification as described in subclause 6.6.3.
Functional entities may also support the delivery of notification using WebSocket protocol (see IETF RFC 6455 [17]) as described in subclause 6.6.4.

6.6.2
Delivering notifications using a separate HTTP connection

To receive notifications using a separate HTTP connection, a Subscribing functional entity shall provide a URI in a "notificationDestination" attribute in the HTTP request which creates the resource that represents the subscription.
To deliver the notifications, the CAPIF core function shall assume the role of a HTTP client and use the URI received in the "notificationDestination" attribute.

Subclause 6.3 applies to this HTTP connection with the following clarification:

-
the CAPIF core function shall use HTTP upgrade mechanism to negotiate the HTTP version.

6.6.3
Notification Test Event

"Notification_test_event" feature is optional to support. If supported, the Subscribing functional entity may test the reception of notifications by subscribing to the notification of a test event.

To subscribe, the Subscribing functional entity shall include a "requestTestNotification" attribute, set to "true", in the HTTP request used to create or update a notification subscription. In any other HTTP request or response, this attribute shall retain the value that was provided when subscription resource was created.

Upon receiving the "requestTestNotification" attribute as part of a subscription creation or update request, the CAPIF core function shall send a test notification containing a body formatted according to the "TestNotification" data type as defined in subclause 6.2.2.x, immediately after establishing the notification delivery connection.
If the Subscribing functional entity does not receive the test notification within a configured time, the Subscribing functional entity determines that the notification delivery with the selected method is not possible and may take corrective actions.

6.6.4
Notification Delivery using Websocket

6.6.4.1
General

The procedures in the present subclause apply only if
-
both, the Subscribing functional entity and the CAPIF core function support the "Notification_websocket" feature. If the feature "Notification_websocket", is supported, the feature "Notification_test_event" shall also be supported; and
-
the notification delivery mechanism using a separate HTTP connection as described in subclause 6.6.2, including test notification as described in subclause 6.6.3, fails.
NOTE:
The Subscribing functional entity can determine feasibility of notifications using a separate HTTP connection based on past interactions with the CAPIF core function.
When using Websockets, the CAPIF core function does not need to wait for confirmations of notifications sent before delivering the next notification.
The CAPIF core function shall determine whether a notification was successfully delivered by correlating the sequence numbers of the sent notifications with the received acknowledgements.
The CAPIF core function may re-send a notification, using the same sequence number, if it has not received an acknowledgement with a matching sequence number after a configurable time-out. The Subscribed functional entity shall consider notifications with the same sequence number that arrive within a configurable time interval as duplicates.

The Subscribed functional entity should send periodic Websocket "PING" frames to keep the connection alive.

6.6.4.2
Establishing Websocket connection
If it is determined that the notification delivery mechanism using separate HTTP connection is not feasible, either by testing as described in subclause 6.6.3 or by past interactions, the Subscribing functional entity may request an upgrade to Websocket.

To upgrade to Websocket, the Subscribing functional entity requests the CAPIF core function to provide a URI for an HTTP connection, by configuring the subscription. The Subscribing functional entity shall set the "requestWebsocketUri" attribute to "true" as specified in subclause 6.2.2.y.
The Subscribing functional entity may also request the CAPIF core function to provide a URI in a new subscription creation request, and should in this case terminate the original subscription.

When the CAPIF core function receives a subscription creation or update request indicating use of Websockets for notification delivery (i.e. with the "requestWebsocketUri" attribute set to "true"), it shall assign a Websocket URI, where it intends to receive the Websocket connection establishment. and shall provide this URI in the "websocketUri" attribute in the response as defined in subclause 6.2.2.y. Any subsequent update requests for the subscription resource, asking assignment of a new Websocket URI, shall be rejected by the CAPIF core function.

Upon receiving the Websocket URI from the CAPIF core function in the "websocketUri" attribute as specified in subclause 6.2.2.y-1 in the subscription creation or subscription update response, the Subscribing functional entity

-
 shall establish an HTTP connection towards the received URI; and

-
shall upgrade the established connection to the Websocket protocol (IETF RFC 6455 [17]) using the HTTP upgrade mechanism defined in IETF RFC 7230 [8].

6.6.4.3
Message framing
6.6.4.3.1
General
The request and response for delivering a notification or acknowledging its receipt shall be framed as described in this subclause. Use of CRLF is defined in IETF RFC 7230 [8].
6.6.4.3.2
Notification
To deliver a notification to a Subscribing functional entity, the CAPIF core function shall embed the following structure in a separate Websocket data frame with 0x2 (Binary) opcode in the following order:

1)
the string "3GPP-WS-Notif-Seq:", followed by a blank, followed by a four-byte sequence number encoded as decimal number in ASCII, followed by CRLF;
2)
following HTTP headers in any order, with the syntax and semantics as defined in IETF RFC 7230 [8] and IETF RFC 7231 [9]: Content-Type (mandatory), Content-Encoding (optional), Content-Length (mandatory). Every HTTP header line shall be ended by CRLF;

3)
CRLF to end the headers section; and

4)
payload body of the notification, as defined in the individual APIs.

6.6.4.3.3
Acknowledgement
To acknowledge receipt of a notification message, the Subscribing functional entity shall embed the following structure in a separate Websocket data frame with 0x2 (Binary) opcode in the following order:

1)
the string "3GPP-WS-Notif-Seq:", followed by a blank, followed by the four-byte sequence number of the notification being acknowledged encoded as decimal number in ASCII, followed by CRLF;

2)
HTTP status code (e.g. 204) and status message (e.g. No Content) as defined for the individual APIs, separated by a single blank character, followed by CRLF;

3)
conditionally, as defined in IETF RFC 7230 [8] and IETF RFC 7231 [9], the following HTTP headers in any order: Content-Type, Content-Encoding, Content-Length. Every HTTP header line shall be ended by CRLF;

4)
CRLF to end the headers section; and
5)
payload body of the response, if applicable on the status code and the HTTP headers, as defined in IETF RFC 7230 [8] and IETF RFC 7231 [9].

*** End of Changes ***
