
3GPP TSG CT4 Meeting #83
C4-182227
Montreal, CANADA; 26th Feb – 02nd Mar 2018

Source:
Orange
Title:
Pseudo-CR on API Versioning
Spec:
3GPP TS 29.501 v0.4.0
Agenda item:
6.2.1.4
Document for:
Decision

3GPP TSG CT4 Meeting #95
C3-181096
Montreal, CANADA; 26th Feb – 02nd Mar 2018

Source:
ORANGE
Title:
Pseudo-CR on API Versioning
Spec:
3GPP TS 29.571v0.4.0
Agenda item:
15.2
Document for:
Approval
Work Item / Release:
5GS_Ph1-CT / Rel-15
1. Introduction
For the time being, the API version is indicated in the URI with a unique field i.e. MAJOR version. However, it should be possible to use a more flexible format that would allow smoother versioning of the API, taking into account the different types of changes, backward compatible and backward incompatible change.
Moreover, the current versioning mechanism seems to tie the API version to a specific release, saying that an API version could not be incremented inside a given release timeframe. One of the reasons for the adoption of the service-based interfaces was to provide operators and vendors with more agile tool that would allow a better reactivity and support changes and/or new requirements without being bound by the current 18 months release timeframe.
2. Reason for Change
It is proposed to:

· Use the semantic versioning defined in https://semver.org
· Use a version number format using three fields MAJOR.MINOR.PATCH

· Clarify the visibility of the fields depending on the use case

· Provide guidelines on version discovery

· Provide guideline on the determination of backward incompatible changes.
3. Proposal

It is proposed to agree the following changes to 3GPP TS 29.501 v0.4.0.
* * * First Change * * * *

2
References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

-
References are either specific (identified by date of publication, edition number, version number, etc.) or non‑specific.

-
For a specific reference, subsequent revisions do not apply.

-
For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same Release as the present document.

[1]
3GPP TR 21.905: "Vocabulary for 3GPP Specifications".

[2]
3GPP TS 29.500: "5G System; Technical Realization of Service Based Architecture; Stage 3".

[3]
IETF RFC 8259: "The JavaScript Object Notation (JSON) Data Interchange Format".

[4]
OpenAPI: "OpenAPI 3.0.0 Specification", https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.0.0.md.

[5]
3GPP TS 29.571: "5G System; Common Data Types for Service Based Interfaces Stage 3".

[6]
IETF RFC 7231: "Hypertext Transfer Protocol (HTTP/1.1): Semantics and Content"
[7]
IETF RFC 7396: "JSON Merge Patch".
[8]
IETF RFC 6902: "JavaScript Object Notation (JSON) Patch".

[9]
IETF RFC 3986: "Uniform Resource Identifier (URI): Generic Syntax"
[10]
IETF RFC 5789: "PATCH Method for HTTP"
[11]
IETF RFC 8288: "Web Linking".
[12]
IANA: "HTTP Status Code Registry at IANA", http://www.iana.org/assignments/http-status-codes
[13]
IETF RFC 7540: "Hypertext Transfer Protocol Version 2 (HTTP/2)"
[14]
Fielding, Roy Thomas. Architectural Styles and the Design of Network-based Software Architectures. Doctoral dissertation, University of California, Irvine, 2000.
[15]
Erik Wilde, Cesare Pautasso, REST: From Research to Practice, Springer
[x]
Semantic Versioning Specification: https://semver.org
[y]
3GPP TS 29.510: "5G System; Network Function Repository Services; Stage 3".

* * * Next Change * * * *

4.3
Version Control

4.3.x
Structure of API version numbers
4.3.x.1
API version number format
API version numbers shall consist of at least 3 numerical fields, following a MAJOR.MINOR.PATCH pattern as described in the Semantic Versioning Specification [x]. Optionally, additional fields can be added after the third field.
At the first publication of the 3GPP Technical Specification defining the API, the version number of the API shall be set to "1.0.0".

Editor’s note:
It is for further study whether optional fields can be used.
4.3.x.2
Rules for incrementing field values
The fields of an API version number shall be incremented according to the following rules:

-
1st Field (MAJOR):
This field shall be incremented when one or more backward incompatible changes to the API.
-
2nd Field (MINOR):
This field shall be incremented if one or more backward compatible changes are made to the API.

-
3rd Field (PATCH):
This field shall be incremented if one or more corrections are made to the OpenAPI [4] without requiring any change to the API.
Rules for determining backward incompatible changes are provided in Annex B.

NOTE:
A mechanism to negotiate the usage of optional features is defined in subclause 6.6 of 3GPP TS 29.500 [2].

Editor’s note:
It is for further study whether additional (optional) fields can be used.
4.3.x.3
Visibility of the API version number fields
The API version shall be indicated in the resource URI of every API, as described in subclause 4.4.1.
The API version shall be indicated as the concatenation of the letter "v" and the 1st field of the API version number.

The other fields shall not be included in the resource URI.
NOTE:
Including these digits in the URI would force the API client to select a specific sub-version, at the risk of seeing the request rejected if the API Service Provider does not support it, while the request could have been served by ignoring unknown elements.

The full API version number (i.e., containing all the fields) shall be visible in the OpenAPI specifications, in the "version" subfield of the "info" field, as illustrated below.
swagger: "2.0"

info:

 version: "1.0.0"

 title: [TBD]
 license:

 name: "[TBD]"

 url: https://[TBD].txt

basePath: "/nudm-sdm/v1"
…

Editor's note:
It is for further study if the full version number can be indicated by a specific version parameter of the Accept HTTP header used in HTTP requests and Content-Type header in the HTTP responses.
4.3.x.4
Relation to the Technical Specification version number
There is no one-to-one mapping between an API version number and the version number of the 3GPP Technical Specification defining this API.

A 3GPP Technical Specification specifies one or more APIs, which may have different versions.

A change in the 3rd field of a 3GPP TS version number (i.e. an editorial change) should not lead to a change in the version number of the APIs specified in the 3GPP TS.

A change in the 1st and 2nd fields of the 3GPP TS version number is likely to lead to at least a change in the minor version number of the APIs specified in the 3GPP TS.

For example, if version 2.4.1 of a 3GPP TS contains version 1.1.1 of API A, B and C, version 3.1.1 of this 3GPP TS can contain version 1.2.1 of API A (if all changes made are backward compatible), version 2.1.1 of API B (if some changes are no backward compatible) and version 1.1.1 of API C (if no changes were made).

Each OpenAPI specification shall provide in an "externalDoc" field the reference of the 3GPP TS describing the API, including the version number, as illustrated below.

swagger: "2.0"

info:

 version: "1.0.0"

 title: nudm-sdm
 license:

 name: "[TBD]"

 url: https://[TBD].txt

externalDocs
 description: 3GPP TS Unified Data Management Services version 0.5.0
 url: http://www.3gpp.org/ftp/Specs/archive/29_series/29.503/29503-050.zip
basePath: "/nudm-sdm/v1"

Multiple versions of the same 3GPP TS can contain the same API (e.g., Nudm-sdm API) without any modification. In this case, all 3GPP TS versions supporting the same API should be listed in the "description" subfield.
4.3.x.5
Discovery of the supported versions

The NF service consumer may discover the API version(s) supported by an NF service producer using the following mechanisms:

-
NRF query:
The NF service consumer may retrieve from the NRF the NF profile of a given NF Instance. This NF profile contains the full version number(s) of the API(s) supported by an NF Service Instance, as described in the subclause 6.1.6.2.4 of 3GPP TS 29.510 [y].
Editor’s note:
The TS 29.510 must be updated to indicate the NFProfile contains a (list of) full version number(s), i.e. a version number with all the fields.
Editor’s note:
other alternative(s) may be described in this section, such as: use of Media Type in HTTP request/response, use GET on a specific version resource, etc.
When a new major version is created, the server shall continue supporting at least the previous major version until a retirement date enabling clients to migrate to the new version. After expiration of the retirement date, the old major version should be deprecated.
Editor’s note:
Guidance needs to be provided about whom sets the retirement date.
* * * Next Change * * * *

4.4.1
Resource URI structure

Resources are either individual resources, or structured resources that can contain child resources. It is recommended to design each resource following one of the archetypes provided in the Annex C.
A URI uniquely identifies a resource. In the 5GC SBI APIs the resource URI structure shall be specified as follows:

{apiRoot}/{apiName}/{apiVersion}/{apiSpecificResourceUriPart}

"apiRoot" shall be a concatenation of the following parts:

-
scheme ("http://" or "https://")
Editor's note: The choice of scheme depends on SA3 requirements.
-
authority (host and optional port) as defined in IETF RFC 3986 [9]

-
an optional deployment-specific string that starts with a "/" character.

Editor's Note:
The use of an optional deployment-specific string is ffs.
"apiName" shall define the name of the API.

"apiVersion" shall indicate the 1st Field (MAJOR) of the version of the API. See also subclause 4.3.x.3.

While "apiRoot", "apiName" and "apiVersion" together define the base URI of the API, each "apiSpecificResourceUriPart" defines a resource URI of the API relative to the base URI.
* * * Next Change * * * *

Annex B (informative):
Backward Incompatible Changes

As described in subclause 4.3.x.1, API version numbers consists of at least 3 numerical fields, following a MAJOR.MINOR.PATCH pattern as described in the Semantic Versioning Specification [x].
After the publication of the first version of an API, evolution of the API is unavoidable. The version number fields shall be incremented when there is modification of the API, following the rules given below:

-
Backward incompatible changes to the API shall be indicated by incrementing the 1st field (MAJOR) of the API version number;
-
Backward compatible changes to the API shall be indicated by incrementing the 2nd field (MINOR) of the API version number;
-
Corrections to the OpenAPI [4] without requiring any change to the API shall be indicated by incrementing the 3rd field (PATCH) of the API version number;
Backward compatible changes are additions or changes in the API that do not break the existing Service Consumer behaviour. Examples of backward compatible changes include:

-
Adding a new, optional child resource/URI;
-
Supporting a new HTTP method;
-
Adding new elements to a resource representation;
-
Changing the order of fields in a resource representation.
Backward incompatible changes are additions or changes in the API that break the existing Service Consumer behaviour. Here is a list of backward incompatible changes that shall require incrementing the 1st field (MAJOR) of the API version number:
-
Removing a resource/URI:
-
Removing support for an HTTP method;
-
Renaming a field in a resource representation;
-
Adding mandatory parameters to a resource URI or resource representation;
-
Attribute data type changes;
-
Cardinality changes (NOTE).
NOTE:
Whether attribute cardinality changes are backward compatible depend on the type of change. Examples of non-backward compatibility changes include decreasing the upper bound of a cardinality range for attributes sent by the client, changing the meaning of the default behavior associated to the absence of an attribute of cardinality 0..N, etc.
Editor’s note:
It is for further study whether the addition of a new error code can be considered a backward compatible change.
Editor's note:
it is to decide how to use this list. This list can be maintained up-to-date with changes considered as incompatible by 3GPP.
* * * End of Changes * * * *

