3GPP TSG-CT WG3 Meeting #95
C3-181067

Montreal, Canada, 26 February – 2 March 2018
Source:
Ericsson
Title:
Discussion Paper on HTTP Patch Format: Alternatives and Way Forward
Agenda item:
15.2
Document for:
Discussion
3GPP TSG CT4 Meeting #83
C4-182185
Montreal, CANADA; 26th Feb – 02nd Mar 2018

Source:
Ericsson
Title:
Discussion Paper on HTTP Patch Format: Alternatives and Way Forward
Agenda item:
6.2.1.4
Document for:
DISCUSSION
1. INTRODUCTION

CT4 have been discussing different alternatives to select a common format for the HTTP Patch method. The technical pros and cons have been quite extensively evaluated in previous meetings (see documents C4-176228 from Ericsson, and C4-176243 from Nokia, from CT4#81 meeting).

From those papers, and after extensive offline discussions, the main pros/cons of the different alternatives can be summarized in:

- JSON Patch can be used to modify any type of data structure in the JSON document, so there are no functional limitations in its usage. The main drawback is regarded as the lack of ease to specify, in OpenAPI, a proper schema checking of the allowed and disallowed changes on a given resource.

- Merge Patch expresses more easily this allowed/disallowed changes on a resource by describing a schema that resembles the schema definition of the original resource to be patched. However, the main functional limitation is its inability to modify array elements.
2. ALTERNATIVES

Given the impossibility, so far, for CT4 to reach consensus, we should evaluate the different alternatives in order to move forward. In our opinion, the different scenarios can be summarized, in order of "more desirable" to "less desirable", as follows:

A. CT4 chooses a single PATCH format for all APIs defined in 5GC.

B. For each API, a single PATCH format is chosen, depending on whether there is at least one resource in the API that requires modification of individual array elements.
C. For each resource of each API, a single PATCH format is used, depending on whether such resource requires modification of individual array elements
D. A different format is used to patch different parts (elements) of a single resource. No single format is chosen for a given API, or resource.
The reason for having alternative A as most desirable is due to the homogeneity, system-wide, in the use of a single format, which results is easier coding, testing, debugging, integration, etc, etc…

The rest of the alternatives introduce, gradually, more and more "entropy" in the network, where in most cases, every [client/server/resource] tuple uses different formats to do essentially the same task (modify a resource). In our view this is highly undesirable, and prone to create frequent interoperability problems.

Note that, alternative A and B is basically what everyone in the industry does today, while alternatives B and C and totally unheard of, and to our knowledge, 3GPP would be the only ones defining such a chaotic handling of Patch formats.
With the potential voting announced for CT4#83, the options 1 and 2 in the voting (to use JSON Patch, or Merge Patch), both correspond to alternative A in the list above. Then, option 3 in the voting (to use both formats, per resource), corresponds to alternative C.
3. EVALUATION

Now, if alternative A is the most desirable, we should ask ourselves, why do we need to sacrifice the most desirable approach and choose second-best alternatives.
Merge Patch

From past discussions in CT4, it is agreed that the functional limitation of the Merge Patch format, relies in its very own specification: there are no mechanisms defined that allow the manipulation of array elements.

This may be seen as a showstopper, or not; e.g., if someone would be tasked to create a single REST API, and it could be ensured with full certainty that there is no need to require modification of array elements, now or in the future, then Merge Patch could be a good fit.

Unfortunately, the task we have, in CT4, is to create, not one, but ~15 different APIs (or ~30 APIs if we consider CT3), where array manipulation is required (or expected to be required) in many cases.

It's worth mentioning that an alternative data modelling technique (the use of Maps/Dictionaries, instead of arrays) has been proposed as a way to overcome this limitation.

In our opinion, this technique (as any other data modelling approach) is to be used whenever the underlying data is a good fit for such modelling. But using it, systematically, simply to overcome a limitation of a given patch format, is extremely dangerous; this approach would imply "forbidding" the usage or arrays in JSON entirely, and this is regarded as something absolutely disproportionate, and prone to mis-using an, otherwise fine, modelling technique that should be used only when deemed appropriate.
JSON Patch
So, if Merge Patch is not regarded as an appropriate option, due to the high diversity in the 5GC APIs, we should evaluate which problems we could expect, with adopting JSON Patch uniformly.

The main problem, form past discussions, seems to rely on the alleged difficulty to enforce, in the OpenAPI, a schema checking of the allowed operations (e.g., to not allow the modification of a given JSON element, that should not be changed by the client).

First, it is totally clear that those checks on the allowed/disallowed changes must be enforced by the server; no doubt about that. But, is it really required that those restrictions are enforced by the schema definitions?

We have doubts that this is really required and, according to external sources, it is dubious that this is even a "desirable approach". For example, similar reflections can be found here:

https://medium.com/@markherhold/validating-json-patch-requests-44ca5981a7fc
In that article, it is shown how a very simple software technique, can allow the server to enforce the changes requested by a given patch document, according to a clearly defined set of allowed/disallowed changes on the resource elements. At the same time, the article discourages such checks to be done by the schema itself.
Maybe a good comparison could be done with Diameter and ABNF. The checks done by the ABNF can be compared with the OpenAPI schema checks. But then, in Diameter, CT4 have been specifying, for 10+ years, an additional set of normative behaviour, and restrictions, to be done on top on the restrictions that the ABNF syntax specified. The OpenAPI check can be seen as a set of basic check that must be met; but not the only ones, and the server is expected to do many more checks to guarantee system consistency.

In that case, the main alleged problem with JSON Patch, could be considered as "disputable" or, at most, as a minor issue, and we see no major functional problem to adopt this format for all 5GC APIs.

4. CONCLUSION

It is recommended to go for JSON Patch as the single format for 5GC APIs, by agreeing the pCR in C4-182186, and specify in normative text which resource elements are allowed/disallowed to be modified by a Patch operation.
