3GPP TSG-CT WG3 Meeting #93
C3-176094
Reno, USA, 27 November - 1 December 2017
Source:
Ericsson
Title:
Discussion Paper: HTTP PATCH format evaluation
Agenda item:
15.2.1
Document for:
DISCUSSION AND AGREEMENT
1. INTRODUCTION

Several API definitions in 5GC proposed to use the HTTP PATCH method (see IETF RFC 5789 [1]) to update certain parts of a resource. This IETF RFC essentially describes the HTTP method, but it leaves unspecified the concrete language used to define the changes:

[Section 2]

The PATCH method requests that a set of changes described in the request entity be applied to the resource identified by the Request-URI. The set of changes is represented in a format called a "patch document" identified by a media type.

(…)

[Section 2.1]

PATCH /file.txt HTTP/1.1

Host: www.example.com

Content-Type: application/example

If-Match: "e0023aa4e"

Content-Length: 100

[description of changes]

Note that the body of the PATCH request, in the example above, is shown as "[description of changes]", but this is not further elaborated, or described, in the RFC.

Therefore, the discussion was started on which format was the most appropriate for the document that specifies the set of changes to be applied to the resource on the server.

Among many different alternatives, probably the two most popular formats, due to their IETF standard status, are:

- JSON PATCH, specified in IETF RFC 6902 [2].

- JSON MERGE PATCH, specified in IETF RFC 7396 [4].

2. EVALUATION
2.1 JSON PATCH

The format of the patch document consists on an array of explicit operations: add / remove / replace / move / copy / test, to be applied on specific elements of the original JSON document.

The specific element affected by each operation is identified by means of the JSON Pointer syntax (see IETF RFC 6901 [3]). This allows the unambiguous identification of all kind of elements, regardless of their type, including specific members of a JSON object, and specific elements inside a JSON array.
So, each element in the array of operations is a JSON object, containing 3 members:

- The operation itself, indicated by the "op" element (e.g. "op": "replace")

- The path (JSON Pointer) of the node in the JSON document tree, indicated by the "path" element (e.g. "path": "a/b/c")

- The new value for that node, indicated by the "value" element (e.g., "value": "1")
An interesting feature of the JSON PATCH format is the "test" operation. This operation does not result in any actual changes on the original document, but it can be used to describe assertions on the document at given points of the JSON Patch execution. If the "test" evaluates to false then an error occurs, subsequent operations won’t be executed, and the document is rolled back to its initial state. This mechanism may be useful to ensure that certain preconditions are met before applying the PATCH document, and also to ensure that after the PATCH, the document will be in a consistent state.
2.2 JSON MERGE PATCH
This format is similar to the "diff" operation popular in Unix systems. It only contains the nodes of the document which should be different after execution of the PATCH (not the whole path of the affected node, as in JSON PATCH).

At first glance, this simplicity looks attractive, but it should be noted that it implies several important functional drawbacks and limitations:

· Arrays cannot be manipulated by merge patches. In order to add an element to an array, or replace any of its elements, then the entire array must be included in the merge patch document, even if the actually changed parts is minimal.
· Deletion happens by setting a key to null. This inherently means that it isn’t possible to change a key’s value to null, since such modification cannot be described by a merge patch document.
· The execution of a merge patch document never results in error. Any malformed patch will be merged, so it is a very liberal format. It is not necessarily good, since you will probably need to perform programmatic check after merge, or run a JSON Schema validation after the merge.

Source: "JSON Patch and JSON Merge Patch" [5].
3. EXAMPLES

EXAMPLE 1

Very simple example, just to highlight the syntax differences in both formats.

Original JSON document (a JSON object containing a single member "a", which is a JSON object, with 2 members, "b" and "c"):

{

 "a" : {

 "b": "1",

 "c": "2"
 }

}

The JSON PATCH document to replace the value of member "c" in the "a" object, would be:

[

 {

 "op": "replace", "path": "/a/c", "value": "3"

 }

]

The JSON MERGE PATCH document to achieve the same result would be:
{

 "c": "3"

}
So, for very simple scenarios, both formats are functionally equivalent, and the JSON MERGE PATCH is simpler and typically shorter.
EXAMPLE 2

A more elaborate example, trying to highlight a more realistic use case (e.g., in an hypothetical JSON data structure from an NRF service).

Original JSON document:

{

 "NFProfile" : {

 "NFInstanceID": "uniqueID1",

 "InstanceParam1": "xxxx",

 "InstanceParam2": "yyyy",

 "NFServices": [

 { "NFServiceID": "uniqueID1", "ServiceParam1": "xxx", "ServiceParam2": "yyy", "ServiceStatus": "on" },

 { "NFServiceID": "uniqueID2", "ServiceParam1": "xxx", "ServiceParam2": "yyy", "ServiceStatus": "on" },

 { "NFServiceID": "uniqueID3", "ServiceParam1": "xxx", "ServiceParam2": "yyy", "ServiceStatus": "on" }
]

 }

}

The JSON PATCH document to set the "ServiceStatus" member to "off", in the first of the "NFServices" array elements, would be:

[

 {

 "op": "replace", "path": "/NFProfile/NFServices/0/ServiceStatus", "value": "off"

 }

]

The JSON MERGE PATCH document to achieve the same result would be:

{

 "NFServices": [

 { "NFServiceID": "uniqueID1", "ServiceParam1": "xxx", "ServiceParam2": "yyy", "ServiceStatus": "off" },

 { "NFServiceID": "uniqueID2", "ServiceParam1": "xxx", "ServiceParam2": "yyy", "ServiceStatus": "on" },

 { "NFServiceID": "uniqueID3", "ServiceParam1": "xxx", "ServiceParam2": "yyy", "ServiceStatus": "on" }

]

}
with the additional side-effect of having to read the array prior to the PATCH operation, because the client might not know the original value of "ServiceStatus" for the elements 2 and 3 of the array.

3. CONCLUSION

As indicated in [5], the JSON Merge Patch format is a simpler format, but maybe it is a "naively simple format", with limited usability. It may be appropriate for very simple scenarios, but probably not so much for a complex system such as the 5GC. The clear functional limitations do not make up for the alleged simplicity, with particular emphasis in the limitation of not being able to manipulate individual array elements.
Also, JSON PATCH is already used in other 3GPP TS's defining REST APIs (e.g., 3GPP TS 29.155 [6]).

Therefore, it is recommended to adopt the JSON PATCH format consistently in the SBI APIs in the 5GC.

4. REFERENCES

[1]
IETF RFC 5789: "PATCH Method for HTTP", https://tools.ietf.org/html/rfc5789
[2]
IETF RFC 6902: "JavaScript Object Notation (JSON) Patch", https://tools.ietf.org/html/rfc6902
[3]
IETF RFC 6901: "JavaScript Object Notation (JSON) Pointer", https://tools.ietf.org/html/rfc6901

[4]
IETF RFC 7396: "JSON Merge Patch", https://tools.ietf.org/html/rfc7396
[5]
"JSON Patch and JSON Merge Patch", http://erosb.github.io/post/json-patch-vs-merge-patch/
[6]
3GPP TS 29.155: "Traffic steering control; Representational State Transfer (REST) over St reference point", http://www.3gpp.org/DynaReport/29155.htm
