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5.5.1.1.7
Usage of HTTP PATCH
The HTTP PATCH method, as defined in IETF RFC 5789 [aa], allows for a partial update of previously sent data, e.g. resources. For a complete replacement of previously sent data, the HTTP PUT method is used.

The HTTP PATCH method thus aims to reduce message size and processing effort compared to the PUT method.

For JSON (IETF RFC 7159 [8]) as Data Serialisation format (see subclause 5.5.3) for the original data, IETF has defined the following methods to describe modifications of those files:

JSON Patch


"JSON Patch" is defined in IETF RFC 6902 [xx]. It describes operations that are to be applied against the previously received JSON document. The operations describe a target in the JSON file (i.e. object member or array index) and modifications (add, replace, delete), and is applicable new value.

Some examples are:
   { "op": "remove", "path": "/a/b/c" },
   { "op": "add", "path": "/a/b/c", "value": [ "foo", "bar" ] },
   { "op": "replace", "path": "/a/b/c", "value": 42 }

The result is a new JSON file that will need to be evaluated against the IDL (see subclause 5.5.5);
An implementation at the receiving side that deviates from that processing order and only passes a representation of the changes, rather than a representation of the complete data to the application seems complicated; otherwise the application will need to cope with a representation of the changed data that deviates considerably from the original representation and will need a knowledge of the original JSON file that the tooling of an IDL such as OpenAPI would otherwise avoid. At the sending side, the application will also need detailed knowledge of the JSON file that tooling such as available for OpenAPI could otherwise hide.

JSON Merge Patch
-
"JSON Merge Patch" is defined in IETF RFC 7386 [yy]. Its basic idea is send only the portion of the data that needs to be changed in a representation that closely resembles the original one.

For example given the following original JSON document:
   {
     "a": "b",
     "c": {
       "d": "e",
       "f": "g"
     }
   }
changing the value of "a" and removing "f" can be achieved by sending:
   {
     "a":"z",
     "c": {
       "f": null
     }
   }

The syntax has some limitations: It does not allow to modify individual elements within an array, only to replace the complete array. It also assumes that the value null is not used as valid value of an attribute.
While a processing similar to JSON merge is conceivable (apply the rules to the original JSON file and evaluate the complete new JSON file against the IDL), the similarity to the original data format simplifies a processing where only the changes rather than the complete data are passed to the application.

The ETSI GS ME  009 [49] guidelines recommend the usage of JSON Merge Patch.

For 3GPP applications it seems desirable to clearly describe what modifications are permissible by a PATCH and also to enable an automatic check by a JSON schema.
For JSON merge Patch this can be achieved by defining structured data types that are similar to the original structured data types as JSON schema for the PATCH operation. Those data types only contain attributes that are allowed to be modified, and may also mark those attributes as "nullable to enable their removal (The OpenAPI specification allows to define that that null is supplied as value instead of the data type of an attribute via the "nullable" keyword.).
For JSON Patch it seems very complicated to produce such a JSON schema; for instance see the proposal at https://aaronsaray.com/2016/using-json-patch-in-swagger that only defines a schema object to check if a JSON file complies to IETF RFC 6902 [xx], but not if the described modifications are permissible. Note that OpenAPI requires the definition of a RequestBody object defining such a JSON schema for the PATCH operation. 

To define error-resilient applications, cases where either a PATCH request or a PATCH response are lost should be considered. The client that sends a PATCH request and does not receive a timely response will likely want to re-attempt the modification. However, the client will not know whether the request or response was lost and thus whether the server processed the PATCH request, For the JSON merge patch, this difference does not matter because the modifications that can be described are idempotent, i.e. executing the same modifications several times will not change the result (This assumes that a non-existing attribute set to value null will be ignored). However, JSON Patch can describe non-idempotent modifications (Removing the nth element in an array two times in consecution will remove the nth and (n+1)th element of the original array.) and a client would thus need to read the status of the resource before re-attempting the PATCH request.

On the other hand, the limitation of JSON merge patch not to be able to modify individual elements of an array seems very limiting. An extension of JSON merge PATCH to overcome this limitation under certain assumption is thus proposed in what follows:


This extension only works for arrays where the elements all have the same structured data type and contain an "identifier" attribute with a unique value for each element (comparable e.g. to the PCC rule ID used in Diameter on the Gx interface) and where all attributes apart from the identifier are optional

A proposed semantics of an array with such elements in a PATCH body could be:

-
If the element contains a new identifier value, it is added to the array.

-
If the element contains an existing identifier value and some other attribute(s), the other attributes are processed according to JSON merge patch rules, i.e. either the values are modified or the attribute is removed via a null value.

-
If the element contains an existing identifier value and no other attribute and the element exists in the original array, the element is removed.

-
If the element contains an existing identifier value and no other attribute and the element does not exist in the original array, the element is ignored. (This rule is required to make the operation idempotent.)

5.5.1.1.8
Protocol Candidate TCP/TLS/HTTP2/JSON

In current deployments, HTTP is in most cases transported using TCP (see IETF RFC 793 [5]), which provides a reliable transport.

TLS (see IETF RFC 5246 [6]) can be applied to provide transport level security.

5.5.1.1.9
Protocol Candidate UDP/QUIC/HTTP2/JSON

IETF is currently specifying a new alternative transport protocol for HTTP called QUIC (see IETF draft-ietf-quic-transport [10], IETF draft-ietf-quic-tls [11], IETF draft-ietf-quic-http [12], and IETF draft-ietf-quic-recovery [13]).

QUIC is a multiplexed and secure transport protocol that runs on top of UDP. QUIC aims to provide a flexible set of features that allow it to be a general-purpose transport for multiple applications. QUIC implements techniques learned from experience with TCP, SCTP and other transport protocols. Using UDP as the substrate, QUIC seeks to be compatible with legacy clients and middleboxes. QUIC authenticates all of its headers and encrypts most of the data it exchanges, including its signalling. This allows the protocol to evolve without incurring a dependency on upgrades to middleboxes.

5.5.1.1.10
Evaluation of HTTP aspects

5.5.1.1.10.1
Selection of HTTP version

HTTP/1.1 is widely available but HOL blocking at HTTP level is a major concern for its possible use in the 5GC. This would require 5GC NFs acting as HTTP clients to open numerous concurrent TCP connections towards other 5GC NFs acting as HTTP servers. Text-based framing also results in a more complex and inefficient parsing of HTTP frames.

HTTP/2 provides higher performances by supporting:

-
the multiplexing of HTTP requests over the same TCP connection without HOL blocking at HTTP level, thus also avoiding the need to open multiple TCP connections towards a same HTTP server;

NOTE:
HOL blocking at TCP level still exists with HTTP/2 over TCP.

-
binary framing, which allows easier and more efficient parsing of HTTP frames;

-
header compression.

Consequently HTTP/2 shall be used if an HTTP solution is adopted for the SBA protocol.

5.5.1.1.10.2
Selection of Notification method

Subscribe/Notify service operations can be supported in the SBA using two client-server pairs between a consumer NF and a provider NF as specified in subclause 5.5.1.1.4.2, without any significant concern, if an HTTP solution is adopted for the SBA protocol.

NOTE:
More efficient alternatives might be further investigated for future releases.

5.5.1.1.10.3
Selection of HTTP PATCH method

Due to the better possibilities to define exactly what can be merged, the better possibilities to make use of the abstraction from the JSON files the OpenAPI tooling offers to a programmer, due to the lower processing effort and due to the easier error handling, the following is proposed to be applied in normative specifications:

-
PATCH operations make use of the JSON Merge Patch" syntax in IETF RFC 7386 [yy].

-
If only some, but not all properties within a structured data type can be modified, a similar structured data type containing only the attributes that can be modified should be defined and used to define the OpenAPI Request Body object for the body of a PATCH request.
-
if arrays containing elements of a uniform structured data types need to be modified, this shall be described in the PATCH request as described above.
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