
3GPP TSG-CT WG3 Meeting #93
C3-176038
Reno, USA, 27 November - 01 December 2017
	5PCR-Form-v0.3

	PSEUDO CR

	
	

	(

	Spec. number:
	29.891
	Current version:
	1.1.0
	(

	Title:
(

	HTTP Patch

	
	

	Source:
 (

	Nokia, Nokia Shanghai Bell

	
	

	Work item code:
(

	5GS_Ph1-CT
	

	
	

	Reason for (

change:

	Different possibilities for the encoding of PATCH bodies exist, and it is desirable to select a suitable possibility for the 5G service based interfaces. Considerations motivating that choice are best captured in the study

	
	

	Summary of

change: (

	An ammended form of HTTP merge PATCH is recommended.

	
	

	Consequences (

if not agreed:
	Unclear which PATCH method to use.

	
	

	Other specs (

	A similar CR to TR 29.891 is in C4-176196.

	affected(if any):
	

	
	

	
	

	Other comments (

	Corresponding normative changes are proposed in C4-176198 and C4-176199.

* * * First Change * * * *

2
References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

-
References are either specific (identified by date of publication, edition number, version number, etc.) or non‑specific.

-
For a specific reference, subsequent revisions do not apply.

-
For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same Release as the present document.

[1]
3GPP TR 21.905: "Vocabulary for 3GPP Specifications".

[2]
3GPP TS 23.501: "System Architecture for the 5G System; Stage 2".

[3]
3GPP TS 23.502: "Procedures for the 5G System; Stage 2".

[4]
3GPP TS 23.203: "Policies and Charging control architecture; Stage 2".

[5]
IETF RFC 793: "Transmission Control Protocol".

[6]
IETF RFC 5246, "The Transport Layer Security (TLS) Protocol Version 1.2".

[7]
IETF RFC 7540: "Hypertext Transfer Protocol Version 2 (HTTP/2)".
[8]
IETF RFC 7159: "The JavaScript Object Notation (JSON) Data Interchange Format".

[9]
IETF RFC 768: "User Datagram Protocol".
[10]
IETF draft-ietf-quic-transport-04: " QUIC: A UDP-Based Multiplexed and Secure Transport".

[11]
IETF draft-ietf-quic-tls-04: "Using Transport Layer Security (TLS) to Secure QUIC".

[12]
IETF draft-ietf-quic-http-04: "Hypertext Transfer Protocol (HTTP) over QUIC".

[13]
IETF draft-ietf-quic-recovery-04: "QUIC Loss Detection and Congestion Control".

[14]
IETF draft-newton-json-content-rules-08: "A Language for Rules Describing JSON Content".

[15]
IETF RFC 4960: "Stream Control Transmission Protocol".

[16]
3GPP TS 33.210: "3G security; Network Domain Security (NDS); IP network layer security".

[17]
IETF RFC 6733: "Diameter Base Protocol".

[18]
"Architectural Styles and the Design of Network-based Software Architectures", UNIVERSITY OF CALIFORNIA, IRVINE, Dissertation of Roy Thomas Fielding, 2000, Chapter 5 "Representational State Transfer (REST)", https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm.

[19]
IETF RFC 4862: "IPv6 Stateless Address Autoconfiguration".

[20]
IETF RFC 3736: "Stateless Dynamic Host Configuration Protocol (DHCP) Service for IPv6".

[21]
IETF RFC 3315: "Dynamic Host Configuration Protocol for IPv6 (DHCPv6)".

[22]
IETF RFC 2131: "Dynamic Host Configuration Protocol".

[23]
IETF RFC 1542: "Clarification and Extensions for the Bootstrap Protocol".

[24]
IETF RFC 4039: "Rapid Commit Option for the Dynamic Host Configuration Protocol version 4 (DHCPv4)".

[25]
3GPP TS 23.228: "IP Multimedia Subsystem (IMS); Stage 2".

[26]
3GPP TS 24.229: "IP Multimedia Call Control Protocol based on SIP and SDP; Stage 3".

[27]
IETF RFC 2132: "DHCP Options and BOOTP Vendor Extensions".

[28]
IETF RFC 3361: "Dynamic Host Configuration Protocol (DHCP-for-IPv4) Option for Session Initiation Protocol (SIP) Servers".

[29]
IETF RFC 3646: "DNS Configuration options for Dynamic Host Configuration Protocol for IPv6 (DHCPv6)".

[30]
IETF RFC 3319: "Dynamic Host Configuration Protocol (DHCPv6) Options for Session Initiation Protocol (SIP) Servers".

[31]
IETF RFC 6020: "YANG - A Data Modeling Language for the Network Configuration Protocol (NETCONF)".

[32]
IETF RFC 6991: "Common YANG Data Types".

[33]
IETF RFC 7950; "The YANG 1.1 Data Modeling Language".

[34]
IETF RFC 7951: "JSON Encoding of Data Modeled with YANG".

[35]
IETF RFC 8040: "RESTCONF Protocol".

[36]
OpenAPI Initiative, "OpenAPI 3.0.0 Specification", https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.0.0.md.
[37]
3GPP TS 29.155: "Traffic steering control; Representational state transfer (REST) over St reference point".

[38]
3GPP TS 29.250: "Nu reference point between SCEF and PFDF for sponsored data connectivity".

[39]
3GPP TS 29.251: "Gw and Gwn reference points for sponsored data connectivity".

[40]
3GPP TS 29.116: "Representational state transfer over xMB reference point between Content Provider and BM-SC".

[41]
IETF draft-wright-json-schema-01: "JSON Schema: A Media Type for Describing JSON Documents".

[42]
IETF draft-wright-json-schema-validation-01: "JSON Schema Validation: A Vocabulary for Structural Validation of JSON".

[43]
IETF draft-ietf-cbor-cddl-00: "Concise data definition language (CDDL): a notational convention to express CBOR data structures".

[44]
IETF draft-ietf-core-yang-cbor-04: "CBOR Encoding of Data Modeled with YANG".
[45]
3GPP TS 29.002: "Mobile Application Part (MAP) specification".

[46]
3GPP TS 29.328: "IP Multimedia (IM) Subsystem Sh interface; Signalling flows and message contents".

[47]
IETF RFC 7049: "Concise Binary Object Representation (CBOR)".

[48]
Presentation of Leonard Richardson at the QCon Conference. San Francisco (2008): "Justice Will Take Us Millions Of Intricate Moves", Act Three: "The Maturity Heuristic", https://www.crummy.com/writing/speaking/2008-QCon/act3.html.

[49]
Draft ETSI GS MEC 009 V1.0.1 (2017): "Mobile Edge Computing (MEC); General principles for Mobile Edge Service APIs".

[50]
Wikipedia article: "Remote procedure call", https://en.wikipedia.org/wiki/Remote_procedure_call.

[51]
API Design Guide, Google, "https://cloud.google.com/apis/design/".
[52]
IETF RFC 6202: "Known Issues and Best Practices for the Use of Long Polling and Streaming in Bidirectional HTTP".

[53]
IETF RFC 6455: "The Websocket Protocol".

[54]
IETF RFC 7230: "Hypertext Transfer Protocol (HTTP/1.1): Message Syntax and Routing".

[55]
3GPP TS 23.379: "Functional architecture and information flows to support Mission Critical Push To Talk (MCPTT); Stage 2".
[56]
3GPP TS 29.214: "Policy and Charging Control over Rx reference point".

[57]
3GPP TS 22.280: "Mission Critical Services Common Requirements".

[58]
3GPP TS 23.682: "Architecture enhancements to facilitate communications with packet data networks and applications".

[59]
IETF RFC 7541: "HPACK: Header Compression for HTTP/2".

[60]
IETF RFC 7231: "Hypertext Transfer Protocol (HTTP/1.1): Semantics and Content".

[61]
IETF RFC 7232: "Hypertext Transfer Protocol (HTTP/1.1): Conditional Requests".

[62]
IETF RFC 7233: "Hypertext Transfer Protocol (HTTP/1.1): Range Requests".

[63]
IETF RFC 7234: "Hypertext Transfer Protocol (HTTP/1.1): Caching".

[64]
IETF RFC 7235: "Hypertext Transfer Protocol (HTTP/1.1): Authentication".

[65]
C4-174201: "GSMA NG Signal LS to 3GPP CT4 on 5G signalling protocol requirements".

[66]
3GPP TS 23.503: "Policy and Charging Control Framework for the 5G System; Stage 2".

[67]
3GPP TS 29.061: "Interworking between the Public Land Mobile Network (PLMN) supporting packet based services and Packet Data Networks (PDN)".

[68]
3GPP TS 29.213: "Policy and Charging Control signalling flows and Quality of Service (QoS) parameter mapping".
[69]
IEEE 802.3: "IEEE Standard for Ethernet".

[70]
IEEE 802.1Q: "Local and metropolitan area networks--Bridges and Bridged Networks".

[71]
3GPP TS 29.122: "T8 reference point for Northbound APIs".

[aa]
IETF RFC 5789: "PATCH method for HTTP".

[xx]
IETF RFC 6902: "JavaScript Object Notation (JSON) Patch".
[yy]
IETF RFC 7386: "JSON Merge Patch".
* * * Next Change * * * *

5.5.1.1.7
Usage of HTTP PATCH
The HTTP PATCH method, as defined in IETF RFC 5789 [aa], allows for a partial update of previously sent data, e.g. resources. For a complete replacement of previously sent data, the HTTP PUT method is used.

The HTTP PATCH method thus aims to reduce message size and processing effort compared to the PUT method.

For JSON (IETF RFC 7159 [8]) as Data Serialisation format (see subclause 5.5.3) for the original data, IETF has defined the following methods to describe modifications of those files:

JSON Patch

"JSON Patch" is defined in IETF RFC 6902 [xx]. It describes operations that are to be applied against the previously received JSON document. The operations describe a target in the JSON file (i.e. object member or array index) and modifications (add, replace, delete), and is applicable new value.

Some examples are:
 { "op": "remove", "path": "/a/b/c" },
 { "op": "add", "path": "/a/b/c", "value": ["foo", "bar"] },
 { "op": "replace", "path": "/a/b/c", "value": 42 }

The result is a new JSON file that will need to be evaluated against the IDL (see subclause 5.5.5);
An implementation at the receiving side that deviates from that processing order and only passes a representation of the changes, rather than a representation of the complete data to the application seems complicated; otherwise the application will need to cope with a representation of the changed data that deviates considerably from the original representation and will need a knowledge of the original JSON file that the tooling of an IDL such as OpenAPI would otherwise avoid. At the sending side, the application will also need detailed knowledge of the JSON file that tooling such as available for OpenAPI could otherwise hide.

JSON Merge Patch
-
"JSON Merge Patch" is defined in IETF RFC 7386 [yy]. Its basic idea is send only the portion of the data that needs to be changed in a representation that closely resembles the original one.

For example given the following original JSON document:
 {
 "a": "b",
 "c": {
 "d": "e",
 "f": "g"
 }
 }
changing the value of "a" and removing "f" can be achieved by sending:
 {
 "a":"z",
 "c": {
 "f": null
 }
 }

The syntax has some limitations: It does not allow to modify individual elements within an array, only to replace the complete array. It also assumes that the value null is not used as valid value of an attribute.
While a processing similar to JSON merge is conceivable (apply the rules to the original JSON file and evaluate the complete new JSON file against the IDL), the similarity to the original data format simplifies a processing where only the changes rather than the complete data are passed to the application.

The ETSI GS ME 009 [49] guidelines recommend the usage of JSON Merge Patch.

For 3GPP applications it seems desirable to clearly describe what modifications are permissible by a PATCH and also to enable an automatic check by a JSON schema.
For JSON merge Patch this can be achieved by defining structured data types that are similar to the original structured data types as JSON schema for the PATCH operation. Those data types only contain attributes that are allowed to be modified, and may also mark those attributes as "nullable to enable their removal (The OpenAPI specification allows to define that that null is supplied as value instead of the data type of an attribute via the "nullable" keyword.).
For JSON Patch it seems very complicated to produce such a JSON schema; for instance see the proposal at https://aaronsaray.com/2016/using-json-patch-in-swagger that only defines a schema object to check if a JSON file complies to IETF RFC 6902 [xx], but not if the described modifications are permissible. Note that OpenAPI requires the definition of a RequestBody object defining such a JSON schema for the PATCH operation.

To define error-resilient applications, cases where either a PATCH request or a PATCH response are lost should be considered. The client that sends a PATCH request and does not receive a timely response will likely want to re-attempt the modification. However, the client will not know whether the request or response was lost and thus whether the server processed the PATCH request, For the JSON merge patch, this difference does not matter because the modifications that can be described are idempotent, i.e. executing the same modifications several times will not change the result (This assumes that a non-existing attribute set to value null will be ignored). However, JSON Patch can describe non-idempotent modifications (Removing the nth element in an array two times in consecution will remove the nth and (n+1)th element of the original array.) and a client would thus need to read the status of the resource before re-attempting the PATCH request.

On the other hand, the limitation of JSON merge patch not to be able to modify individual elements of an array seems very limiting. An extension of JSON merge PATCH to overcome this limitation under certain assumption is thus proposed in what follows:

This extension only works for arrays where the elements all have the same structured data type and contain an "identifier" attribute with a unique value for each element (comparable e.g. to the PCC rule ID used in Diameter on the Gx interface) and where all attributes apart from the identifier are optional

A proposed semantics of an array with such elements in a PATCH body could be:

-
If the element contains a new identifier value, it is added to the array.

-
If the element contains an existing identifier value and some other attribute(s), the other attributes are processed according to JSON merge patch rules, i.e. either the values are modified or the attribute is removed via a null value.

-
If the element contains an existing identifier value and no other attribute and the element exists in the original array, the element is removed.

-
If the element contains an existing identifier value and no other attribute and the element does not exist in the original array, the element is ignored. (This rule is required to make the operation idempotent.)

5.5.1.1.8
Protocol Candidate TCP/TLS/HTTP2/JSON

In current deployments, HTTP is in most cases transported using TCP (see IETF RFC 793 [5]), which provides a reliable transport.

TLS (see IETF RFC 5246 [6]) can be applied to provide transport level security.

5.5.1.1.9
Protocol Candidate UDP/QUIC/HTTP2/JSON

IETF is currently specifying a new alternative transport protocol for HTTP called QUIC (see IETF draft-ietf-quic-transport [10], IETF draft-ietf-quic-tls [11], IETF draft-ietf-quic-http [12], and IETF draft-ietf-quic-recovery [13]).

QUIC is a multiplexed and secure transport protocol that runs on top of UDP. QUIC aims to provide a flexible set of features that allow it to be a general-purpose transport for multiple applications. QUIC implements techniques learned from experience with TCP, SCTP and other transport protocols. Using UDP as the substrate, QUIC seeks to be compatible with legacy clients and middleboxes. QUIC authenticates all of its headers and encrypts most of the data it exchanges, including its signalling. This allows the protocol to evolve without incurring a dependency on upgrades to middleboxes.

5.5.1.1.10
Evaluation of HTTP aspects

5.5.1.1.10.1
Selection of HTTP version

HTTP/1.1 is widely available but HOL blocking at HTTP level is a major concern for its possible use in the 5GC. This would require 5GC NFs acting as HTTP clients to open numerous concurrent TCP connections towards other 5GC NFs acting as HTTP servers. Text-based framing also results in a more complex and inefficient parsing of HTTP frames.

HTTP/2 provides higher performances by supporting:

-
the multiplexing of HTTP requests over the same TCP connection without HOL blocking at HTTP level, thus also avoiding the need to open multiple TCP connections towards a same HTTP server;

NOTE:
HOL blocking at TCP level still exists with HTTP/2 over TCP.

-
binary framing, which allows easier and more efficient parsing of HTTP frames;

-
header compression.

Consequently HTTP/2 shall be used if an HTTP solution is adopted for the SBA protocol.

5.5.1.1.10.2
Selection of Notification method

Subscribe/Notify service operations can be supported in the SBA using two client-server pairs between a consumer NF and a provider NF as specified in subclause 5.5.1.1.4.2, without any significant concern, if an HTTP solution is adopted for the SBA protocol.

NOTE:
More efficient alternatives might be further investigated for future releases.

5.5.1.1.10.3
Selection of HTTP PATCH method

Due to the better possibilities to define exactly what can be merged, the better possibilities to make use of the abstraction from the JSON files the OpenAPI tooling offers to a programmer, due to the lower processing effort and due to the easier error handling, the following is proposed to be applied in normative specifications:

-
PATCH operations make use of the JSON Merge Patch" syntax in IETF RFC 7386 [yy].

-
If only some, but not all properties within a structured data type can be modified, a similar structured data type containing only the attributes that can be modified should be defined and used to define the OpenAPI Request Body object for the body of a PATCH request.
-
if arrays containing elements of a uniform structured data types need to be modified, this shall be described in the PATCH request as described above.
* * * End of Changes * * * *

�PAGE \# "'Page: '#'�'" �� Enter the specification number in this box. For example, 04.08 or 29.163. Do not prefix the number with anything . i.e. do not use "TS", "GSM" or "3GPP" etc.

�PAGE \# "'Page: '#'�'" �� Enter the version of the draft specification here. This number is the version of the draft specification to which the PCR was written and (normally) to which it will be applied if it is agreed. Make sure that the latest version of the draft specification is used when creating the PCR. If unsure what the latest version is, go to http://www.3gpp.org/ftp/specs/latest-drafts/� HYPERLINK "http://www.3gpp.org/3G_Specs/3G_Specs.htm" ���

�PAGE \# "'Page: '#'�'" �� Enter a concise description of the subject matter of the PCR. It should be no longer than one line.

One or more organizations (3GPP Individual Members) which drafted the PCR and are presenting it to the Working Group.

�PAGE \# "'Page: '#'�'" �� Enter the acronym for the work item which is applicable to the change. A list of work item acronyms can be found in the 3GPP work plan and/or the meeting agenda�

�PAGE \# "'Page: '#'�'" �� Enter text which explains why the change is necessary.

�PAGE \# "'Page: '#'�'" �� Enter text which describes the most important components of the change. i.e. How the change is made.

�PAGE \# "'Page: '#'�'" �� Enter here the consequences if this PCR were to be rejected.

�PAGE \# f"'Page: '#'�'" �� If other specs are affected by this change, then indicate the TS/TR number and the tdoc numbers of the relevant (P)CRs

�PAGE \# "'Page: '#'�'" �� Enter any other information which may be needed by the group being requested to agree to the PCR. This could include special conditions which are not listed anywhere else above.

