Page 1



3GPP TSG-CT WG3 Meeting #91
C3-174208
Krakow, Poland, 21 - 25 August 2017
	5PCR-Form-v0.3 

	PSEUDO  CR

	
	

	(

	Spec. number:
	29.890
	Current version:
	0.2.0
	(



	Title:                     
(

	Interface Definition Language for SBA

	
	

	Source:            
    (

	Ericsson, Nokia, Alcatel-Lucent Shanghai Bell, Verizon, China Mobile

	
	

	Work item code:  
(

	5GS_Ph1-CT
	

	
	

	Reason for           (
   

change:

	CT3 needs to agree on the Interface Definition Language to be used for the Service Based Interfaces.

	
	

	Summary of 
change:                (

	The content of new subclause 5.5.5 is the same as content of subclause 6.2.2.7 from CT4 P-CR on TR 29.891 in C4-174309.

	
	

	Consequences    (
  
if not agreed:
	Relevant protocol aspects will not be analysed.

	
	

	Other specs         (

	

	affected(if any):
	

	
	 

	
	

	Other comments (

	


Additional discussion(if needed):
…
Proposed changes:
* * * 1st  Change * * * *

2
References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

-
References are either specific (identified by date of publication, edition number, version number, etc.) or non‑specific.

-
For a specific reference, subsequent revisions do not apply.

-
For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same Release as the present document.

[1]
3GPP TR 21.905: "Vocabulary for 3GPP Specifications".
[2]
3GPP TS 23.501: " System Architecture for the 5G System; Stage 2".
[3]
3GPP TS 23.502: "Procedures for the 5G System; Stage 2".

[4]
3GPP TS 23.203: "Policies and Charging control architecture; Stage 2".
[5]
IETF RFC 793: "Transmission Control Protocol".

[6]
IETF RFC 5246, "The Transport Layer Security (TLS) Protocol Version 1.2".

[7]
IETF RFC 7540: "Hypertext Transfer Protocol Version 2 (HTTP/2)".
[8]
IETF RFC 7159: "The JavaScript Object Notation (JSON) Data Interchange Format".

[9]
IETF RFC 768: "User Datagram Protocol".
[10]
IETF draft-ietf-quic-transport-02: " QUIC: A UDP-Based Multiplexed and Secure Transport".

[11]
IETF draft-ietf-quic-tls-02: "Using Transport Layer Security (TLS) to Secure QUIC".

[12]
IETF draft-ietf-quic-http-02: "Hypertext Transfer Protocol (HTTP) over QUIC".

[13]
IETF draft-ietf-quic-recovery-02: "QUIC Loss Detection and Congestion Control".

[14]
IETF draft-newton-json-content-rules-08: "A Language for Rules Describing JSON Content".

[15]
IETF RFC 4960: "Stream Control Transmission Protocol".

[16]
3GPP TS 33.210: "3G security; Network Domain Security (NDS); IP network layer security".

[17]
IETF RFC 6733: "Diameter Base Protocol".

[18]
Architectural Styles and the Design of Network-based Software Architectures, UNIVERSITY OF CALIFORNIA, IRVINE, Roy Thomas Fielding, 2000.
[19]
IETF RFC 4862: "IPv6 Stateless Address Autoconfiguration".
[20]
IETF RFC 3736: "Stateless Dynamic Host Configuration Protocol (DHCP) Service for IPv6".

[21]
IETF RFC 3315: "Dynamic Host Configuration Protocol for IPv6 (DHCPv6)".
[22]
IETF RFC 2131: "Dynamic Host Configuration Protocol".

[23]
IETF RFC 1542: "Clarification and Extensions for the Bootstrap Protocol".

[24]
IETF RFC 4039: "Rapid Commit Option for the Dynamic Host Configuration Protocol version 4 (DHCPv4)".

[xa]
IETF RFC 6020: "YANG - A Data Modeling Language for the Network Configuration Protocol (NETCONF)".
[xb]
IETF RFC 6991: "Common YANG Data Types".
[xc]
IETF RFC 7950; "The YANG 1.1 Data Modeling Language".
[xd]
IETF RFC 7951: "JSON Encoding of Data Modeled with YANG".
[xx]
IETF RFC 8040: "RESTCONF Protocol".
[xe]
OpenAPI Initiative, "OpenAPI 3.0.0 Specification", https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.0.0.md.
[xf]
3GPP TS 29.155: "Traffic steering control; Representational state transfer (REST) over St reference point".
[xg]
3GPP TS 29.250: "Nu reference point between SCEF and PFDF for sponsored data connectivity".

[xh]
3GPP TS 29.251: "Gw and Gwn reference points for sponsored data connectivity".
[xk]
3GPP TS 29.116: "Representational state transfer over xMB reference point between Content Provider and BM-SC".
[xi]
IETF draft-wright-json-schema-01: "JSON Schema: A Media Type for Describing JSON Documents".

[xj]
IETF draft-wright-json-schema-validation-01: "JSON Schema Validation: A Vocabulary for Structural Validation of JSON".

[xm]
IETF draft-ietf-cbor-cddl-00: "Concise data definition language (CDDL): a notational convention to express CBOR data structures".
[xn]
IETF draft-ietf-core-yang-cbor-04: "CBOR Encoding of Data Modeled with YANG".
[xl]
3GPP TS 29.002: "Mobile Application Part (MAP) specification".

[xr]
3GPP TS 29.328: "IP Multimedia (IM) Subsystem Sh interface; Signalling flows and message contents".

* * * 2nd  Change * * * *

5.5.5
Interface Definition Language

5.5.5.1
Introduction

An Interface Definition Language (IDL) is a specification language used to describe data models, and interactions between distributed software components.

Ideally, and IDL should have the following characteristics:

-
Formal: It has to be machined-parsed, so it allows automatic checking of correctness and consistency

-
Abstract: It is not bound to specific realizations, in terms of data modelling, or protocol mechanisms

-
Independent of programming language or developing environment

-
Independent of protocol or Inter-Process Communication mechanisms

-
Independent of the data serialization format
-
Provides definitions for frequently required data types
In 3GPP, one of the IDLs with a widest usage, traditionally, has been ASN.1; however, for SBA, and specifically for web technology (RESTful APIs, HTTP/JSON, etc.), there are other approaches with a wider adoption currently in the industry.

A non-exhaustive list of alternatives could be:

-
Standards-based

-
ITU-T/ETSI: ASN.1
-
OASIS: RELAX-NG
-
W3C: WSDL / XML Schema
-
IETF: ABNF, YANG
-
Non-Standard (De-facto Industry standards)

-
OpenAPI Specification (Swagger)
-
JSON Schema

-
JSON Content Rules

-
JSON RPC
-
RAML

-
Protocol Buffers

-
Apache Thrift
In particular, for those protocols using a data serialization format such as JSON or CBOR, there is a need to further describe the data that can be transported in the protocol. IDLs typically are supported by tooling that allows to verify if a JSON or CBOR file complies with an interface definition written in the corresponding language, and possibly also to generate APIs and related code in various programming languages to generate or parse conformant JSON or CBOR files. Some of the IDL do not only contain information related to JSON or CBOR bodies, but also related to the underlying transport protocols, and thus allow for tooling with more extensive automation.
The IDL alternatives in the above list have been narrowed down to six alternatives that best characteristics for SBA and specifically for Web technology. An exhaustive and detailed analysis of each and every alternative from the above list is not intended.
5.5.5.2
Solution 1 – YANG/RESTCONF

5.5.5.2.1
Description

YANG is a data modelling language developed by IETF for the NETCONF protocol. It was originally designed for Network Management, as a replacement for the SNMP protocol (and the associated SMI information modelling framework).
It allows the definition of data models (both "configuration" data and "state" data), and also specific interactions between network elements, in the form of "Event Notifications" and "Actions" (associated to data objects), and generic "Remote Procedure Calls" to be invoked in a network entity.
YANG is defined in IETF RFC 6020 [xa].

In addition, IETF RFC 8040 [xx] defines an HTTP-based protocol (RESTCONF) to access data, and invoke actions, defined in YANG following a REST approach, with standard serialization options based on XML or JSON.
5.5.5.2.2
Evaluation

The main characteristic of this alternative is its capability in terms of abstract data modelling. It shows a higher level of decoupling between the generic data model definition and the actual concrete implementation, in the form of a specific protocol realization and a specific data serialization format.
Additionally, a YANG data model can be used in a standard manner to describe a RESTful type of interaction between client and server, and at the same time, it can also describe RPC (Remote Procedure Call) interactions.
The main issue, from a 3GPP perspective, is that this language was not originally conceived as a general-purpose modeling language and, instead, its primary scope was the Network Management area. In addition, the learning curve is higher than other simpler alternatives.
5.5.5.3
Solution 2 – OpenAPI Specification (Swagger)

5.5.5.3.1
Description

OpenAPI (formerly known as Swagger) defines a standard, programming language-agnostic, interface description for REST APIs. It is specified at:

-
https://github.com/OAI/OpenAPI-Specification
It consists on a language specification itself, and also on a number of tools intended for specification, documentation and code generation for implementation of client and server sides of the API, together with automation of test cases.
The files describing the RESTful API in accordance with the Swagger specification are represented as JSON objects and conform to the JSON standards. YAML, being a superset of JSON, can be used as well to represent a Swagger specification file.
For the definition of primitive data types, the specification is based on the JSON Schema draft-4 (https://tools.ietf.org/html/draft-zyp-json-schema-04#section-3.5).
The last version of OpenAPI Specification, recently approved (June 2017), is version 3.0.0, although the most stable version is 2.0, which has been in production for several years now (since 2014). In version 3.0.0, certain new features have been added, which are expected to be useful in the definition of 5GC interfaces (e.g., language support for adding HATEOAS content, and language support for handling of multipart media types in HTTP bodies).
5.5.5.3.2
Evaluation

The main characteristic of this alternative is its massive and widespread adoption in the industry, for RESTful API design. It can be considered as a de-facto standard (although not backed-up by a formal SDO), and it has the biggest ecosystem of tools (both commercial an Open Source) and community support.
The main criticism to Swagger 2.0 relied on its lack of support for hypermedia, when the framework is mainly targeted for RESTful API specification. This implies that attempting to fulfil the HATEOAS (Hypermedia As The Engine Of Application State) principle, is not straightforward. Sources:

-
http://blog.novatec-gmbh.de/the-problems-with-swagger/
-
https://jimmybogard.com/swagger-the-rest-kryptonite/
In addition, given it primary focus on the RESTful architectural style, its support for RPC style of interactions is not so well supported, although there are workarounds to overcome this issue.
5.5.5.4
Solution 3 – Protocol Buffers

5.5.5.4.1
Description

Protocol Buffers is a mechanism, originally developed by Google and then turned to Open Source, to serialize structured data. It defines its own language (proto3, as the last version), to specify the structure of the data (messages, parameters, data types, etc.) so, in that sense, it can be considered as an IDL.
Protocol Buffers documentation can be found in:

-
https://developers.google.com/protocol-buffers/, and

-
https://github.com/google/protobuf/
The encoding of the data over-the-wire is binary and it is very compact and efficient, at the expense of not being self-describing (that is, there is no way to tell the names, meaning, or full datatypes of fields without an external specification).
Protocol Buffers were originally conceived for usage with RPC-style of interactions, internally at Google, and there is a specific protocol (gRPC) designed for high-performance RPC interactions; nevertheless, they can also be used to model RESTful APIs.
5.5.5.4.2
Evaluation

The main characteristic of this alternative is its efficiency and higher performance.
The main drawback is that the language is maintained and evolved by Google, and it is bound to a number of tools (compilers, code generators, runtimes…) also developed and maintained mainly by Google, so it is not a system fully specified by an SDO. Therefore, this option is not considered further.
5.5.5.5
Solution 4 – JSON Content Rules
5.5.5.5.1
Description

IETF draft-newton-json-content-rules [22] is used by 3GPP CT3 in several specifications (3GPP TS 29.155 [xf], 3GPP TS 29.250 [xg], 3GPP TS 29.251 [xh]). An expired version of this draft has been a de-facto standard in the industry for several years. IETF work resumed a while ago with new versions of the draft. The draft provides an IDL for JSON bodies in a relativey simple format.
5.5.5.5.2
Evaluation
The main characteristic of this alternative is its simplicity. As the draft has seen some usage in the industry for several years, tooling support is available. However, the industry seems to have moved towards the more powerfull OPenAPI Swagger.
5.5.5.6
Solution 5 – JSON Schema

5.5.5.6.1
Description

IETF draft-wright-json-schema [xi] and IETF draft-wright-json-schema-validation [xj] are not directly referenced in 3GPP specs, but are used by the OpenAPI 3.0.0 Specification" [xe] (see below). The draft provides an IDL for JSON bodies in a relatively simple format.
5.5.5.6.2
Evaluation
The main characteristic of this alternative is its simplicity. As the draft has seen some usage in the industry for several years, tooling support is available. However, the industry seems to have moved towards the more powerful OpenAPI Swagger.
5.5.5.7
Solution 6 – CBOR IDL
5.5.5.7.1
Description

IETF draft-ietf-cbor-cddl [xm] is not used by 3GPP so far. The draft provides an IDL for CBOR bodies.
5.5.5.7.2
Evaluation
For CBOR as serialization language, this draft is typically used as IDL. Only limited tooling is currently available and the draft seems not yet widely used.
5.5.5.8
Comparison of IDLs
Table 5.5.5.8-1: Comparison of IDLs.

	
	YANG (see IETF RFC 6020 [xa], IETF RFC 6991 [xb], IETF RFC 7950 [xc], IETF RFC 7951 [xd], and 
IETF draft-ietf-core-yang-cbor [xn])
	OpenAPI 3.0.0 Specification [xe]
	IETF draft-newton-json-content-rules [22]
	IETF draft-wright-json-schema [xi] and IETF draft-wright-json-schema-validation [xj]
	IETF draft-ietf-cbor-cddl [xm]

	Supported MIME Formats
	JSON, XML, CBOR
	JSON, XML
	JSON 
	JSON
	CBOR

	Supported Primitive Data types
	Boolean
int8, int16, int32, int64, uint8, uint16, uint32, and uint64, optional with range
decimal64, optional with range
string, optional with length and/or pattern
enumeration
bits

binary
	boolean

Integer with optional int32 or int64 format and/or range
Number with optional float or double format and/or range
string with optional byte, binary, date, date-time or password format,

enum
	Boolean,
integer,
integer numbers in a range,
float,
double,
floating point numbers in a range,
strings,
URI (optionally including URI scheme)
regular expressions,
Fixed string values (e.g. allowing to define enumerations via groups)
	boolean

Integer with optional int32 or int64 format and/or range

Number with optional float or double format and/or range
string with optional byte, binary, date, date-time or password format,

enum
	Boolean,
int, uint. nint
float, float16, float32, float64
bytes
text
choices (allows to describe enumerations), regular expressions

	Definition of own types supported
	yes
	yes
	yes, via named rules
	yes
	yes

	Including external definitions via URI supported
	yes
	yes
	yes
	yes
	no

	Support for transport protocol
	RFC 8040 [xx] defines an HTTP-based protocol that provides a RESTful programmatic interface for accessing data defined in YANG. In addition, RPC-based interactions are also mapped to HTTP-request/response transactions in a standard way. 
	Extensive HTTP support well aligned with Restful style:
Allows to define HTTP methods applicable to data structures, including parameters and response codes.
	no
	no
	no

	Stability of reference
	RFCs
	Webpage by OpenApi Specification, also including reference to outdated version of two individual IETF drafts.
However widely used in the OpenSource community and thus relatively stable.
	Individual IETF draft
	Individual IETF draft
	WG IETF draft

	Availability of tooling
	Tools listed at http://www.yang-central.org/twiki/bin/view/Main/YangTools
	Tools available at https://swagger.io/
	Some tools available e.g. at http://codalogic.github.io/jcr/
	Tools available at http://json-schema.org/implementations.html
	Little tooling at http://cbor.io/tools.html

	Forward compatibility
	It is possible to define optional elements as part of the data definition, via the "mandatory = true/false" statement.
	Yes;
By default, additional properties within an Object are ignored, This can be controlled via the "additionalProperties" keyword.
	Yes:
Additional properties within an Object are ignored
	Yes;
By default, additional properties within an Object are ignored, This can be controlled via the "additionalProperties" keyword.
	Yes:
"Structs" can be extended with arbitrary key value pairs if a key value pair with wildcarded definition is included in their definition. How the receiver would handle such extensions is nor directly specified.

	Other aspects
	Originally designed for Network Management, not as a general-purpose framework.

Steeper learning curve compared with other simpler approaches.
	De-facto industry standard (widest acceptance in industry, at this moment).

Simpler to use than other more formal alternatives.

Powerful enough to address expected needs in 3GPP specifications. 
	Simplest alternative considered
	Simple
	Little tooling available.


5.5.5.9
Conclusion

Given the widest industry acceptance for design of RESTful APIs, and the availability of a big ecosystem of tools and community support, it is recommended to use OpenAPI Specification, version 3.0.0, as the IDL for usage in 5GC.
It is recommended that the definition of each interface is done by including a normative annex, containing the OpenAPI specification file, in each Technical Specification in 5GC, similar to how it has been done is previous TS's in 3GPP (e.g. ASN.1 in 3GPP TS 29.002 [xl], XML Schema in 3GPP TS 29.328 [xr], Swagger in 3GPP TS 29.116 [xk], etc.).
It is also expected that the API/protocol specification will include not only a formal OpenAPI specification file, but also textual and/or tabular format in the main body of the specification describing application-level detailed description handling of parameters (Information Elements) and their mapping to actual protocol structures.
* * * End of Changes * * * *

�PAGE \# "'Page: '#'�'"  �� Enter the specification number in this box. For example, 04.08 or 29.163. Do not prefix the number with anything . i.e. do not use "TS", "GSM" or "3GPP" etc.


�PAGE \# "'Page: '#'�'"  �� Enter the version of the draft specification here. This number is the version of the draft specification to which the PCR was written and (normally) to which it will be applied if it is agreed.  Make sure that the latest version of the draft specification  is used when creating the PCR. If unsure what the latest version is, go to  http://www.3gpp.org/ftp/specs/latest-drafts/� HYPERLINK "http://www.3gpp.org/3G_Specs/3G_Specs.htm" ���


�PAGE \# "'Page: '#'�'"  �� Enter a concise description of the subject matter of the PCR. It should be no longer than one line. 


One or more organizations (3GPP Individual Members) which drafted the PCR and are presenting it to the Working Group.


�PAGE \# "'Page: '#'�'"  �� Enter the acronym for the work item which is applicable to the change.  A list of work item acronyms can be found in the 3GPP work plan and/or the meeting agenda�


�PAGE \# "'Page: '#'�'"  �� Enter text which explains why the change is necessary.


�PAGE \# "'Page: '#'�'"  �� Enter text which describes the most important components of the change. i.e. How the change is made.


�PAGE \# "'Page: '#'�'"  �� Enter here the consequences if this PCR were to be rejected. 


�PAGE \# f"'Page: '#'�'"  �� If  other specs are affected by this change, then indicate the TS/TR number and the tdoc numbers of the  relevant  (P)CRs


�PAGE \# "'Page: '#'�'"  �� Enter any other information which may be needed by the group being requested to agree to the PCR. This could include special conditions which are not listed anywhere else above.





