Page 1

3GPP TSG-CT WG3 Meeting #91
C3-174072
Krakow, Poland, 21 - 25 August 2017
	5PCR-Form-v0.3

	PSEUDO CR

	
	

	(
	Spec. number:
	29.890
	Current version:
	0.2.0
	(

	Title:
(
	Comparison of RESTful and RPC protocol design

	
	

	Source:
 (
	Nokia, Alcatel-Lucent Shanghai Bell, Verizon, China Mobile

	
	

	Work item code:
(
	5GS_Ph1-CT
	

	
	

	Reason for (

change:

	A Comparison of RESTful and RPC protocol design has been requested in CT4 to aid the protocol selection

	
	

	Summary of
change: (
	A Comparison of RESTful and RPC protocol design is being provided.

	
	

	Consequences (
if not agreed:
	No comparison of RESTful and RPC protocol design provided in the study.

	
	

	Other specs (
	

	affected(if any):
	

	
	

	
	

	Other comments (
	The contribution assumes structure introduced by TDOC C3-174068.
A similar contribution to CT4 is in C4-174017.

*** 1st Change ***
2
References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

-
References are either specific (identified by date of publication, edition number, version number, etc.) or non‑specific.

-
For a specific reference, subsequent revisions do not apply.

-
For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same Release as the present document.

[1]
3GPP TR 21.905: "Vocabulary for 3GPP Specifications".
[2]
3GPP TS 23.501: " System Architecture for the 5G System; Stage 2".
[3]
3GPP TS 23.502: "Procedures for the 5G System; Stage 2".

[4]
3GPP TS 23.203: "Policies and Charging control architecture; Stage 2".
[5]
IETF RFC 793: "Transmission Control Protocol".

[6]
IETF RFC 5246, "The Transport Layer Security (TLS) Protocol Version 1.2".

[7]
IETF RFC 7540: "Hypertext Transfer Protocol Version 2 (HTTP/2)".
[8]
IETF RFC 7159: "The JavaScript Object Notation (JSON) Data Interchange Format".

[9]
IETF RFC 768: "User Datagram Protocol".
[10]
IETF draft-ietf-quic-transport-02: " QUIC: A UDP-Based Multiplexed and Secure Transport".

[11]
IETF draft-ietf-quic-tls-02: "Using Transport Layer Security (TLS) to Secure QUIC".

[12]
IETF draft-ietf-quic-http-02: "Hypertext Transfer Protocol (HTTP) over QUIC".

[13]
IETF draft-ietf-quic-recovery-02: "QUIC Loss Detection and Congestion Control".

[14]
IETF draft-newton-json-content-rules-08: "A Language for Rules Describing JSON Content".

[15]
IETF RFC 4960: "Stream Control Transmission Protocol".

[16]
3GPP TS 33.210: "3G security; Network Domain Security (NDS); IP network layer security".

[17]
IETF RFC 6733: "Diameter Base Protocol".

[18]
Architectural Styles and the Design of Network-based Software Architectures, UNIVERSITY OF CALIFORNIA, IRVINE, Roy Thomas Fielding, 2000.
[19]
IETF RFC 4862: "IPv6 Stateless Address Autoconfiguration".
[20]
IETF RFC 3736: "Stateless Dynamic Host Configuration Protocol (DHCP) Service for IPv6".

[21]
IETF RFC 3315: "Dynamic Host Configuration Protocol for IPv6 (DHCPv6)".
[22]
IETF RFC 2131: "Dynamic Host Configuration Protocol".

[23]
IETF RFC 1542: "Clarification and Extensions for the Bootstrap Protocol".

[24]
IETF RFC 4039: "Rapid Commit Option for the Dynamic Host Configuration Protocol version 4 (DHCPv4)".

[xx]
Dissertation of Roy T. Fielding at the University of California at Irvine, USA (2000): "Architectural Styles and the Design of Network-based Software Architectures", Chapter 5 "Representational State Transfer (REST)", https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm.

[yy]
Presentation of Leonard Richardson at the QCon Conference. San Francisco (2008): "Justice Will Take Us Millions Of Intricate Moves", Act Three: "The Maturity Heuristic", https://www.crummy.com/writing/speaking/2008-QCon/act3.html.

[zz]
Draft ETSI GS MEC 009 V1.0.1 (2017): "Mobile Edge Computing (MEC); General principles for Mobile Edge Service APIs".

[aa]
Wikipedia article: "Remote procedure call", https://en.wikipedia.org/wiki/Remote_procedure_call.

[bb]
API Design Guide, Google, "https://cloud.google.com/apis/design/"
*** 2nd Change ***
3.3
Abbreviations

For the purposes of the present document, the abbreviations given in 3GPP TR 21.905 [1] and the following apply.
An abbreviation defined in the present document takes precedence over the definition of the same abbreviation, if any, in 3GPP TR 21.905 [1].

AN
Access Network
DN
Data Network

EPC
Evolved Packet Core

HTTP
Hypertext Transfer Protocol

JSON
JavaScript Object Notation
PCC
Policy and Charging Control

QoS
Quality of Service

REST
Representational State Transfer
RPC
Remote procedure call
SCTP
Stream Control Transmission Protocol
TCP
Transmission Control Protocol

UDP
User Datagram Protocol
*** 3rd Change ***

5.5.2
Comparison of RESTful and RPC protocol design

5.5.2.1
Characteristics of RPCs

Remote procedure calls (RPCs) do not have a formal definition, but typical characteristics are described in the related Wikipedia article [aa].

RPCs enable inter-process communication where a client entity invokes a certain functionality on a server entity over a network protocol. They typically use a request-response protocol. Unlike the RESTful design, the client typically does not operate on resources, but invokes “functions” or “services".

Many different implementations of RPCs exist that use various protocols for the data transfer and the encoding of the transported data. Among them are also implementations that use HTTP.
Some typical characteristics of RPCs over HTTP are:

-
The POST verbs is used in most cases, sometimes also PUT or GET.
-
The specific operation (service) to invoke may be included as part of the URI.
-
For HTTP GET, the input parameters are coded as URI parameters.
-
For HTTP POST or PUT, the input parameters are coded in the HTTP body.
-
The result (output parameters) is coded in the body of the HTTP response.
5.5.2.2
Characteristics of REST

REST (Representational State Transfer) is a set of architectural principles introduced by of Roy T. Fielding in his Dissertation [xx]. Those principles are frequently associated to the Service Oriented Architecture. The principles are:

1.
Client/Server:
Split of responsibilities between client and server. A Client sends a request to the server which returns a response. This allows separating different tasks, e.g. the user interface generation from the data storage, which simplifies the single tasks and enhances portability and scalability.

2.
Stateless:
Each request from client to server must contain all the information necessary to understand the request. Session state is therefore kept entirely on the client. The server does not keep history/memory of previous requests. Possible session state can be transferred by the server to another service such as a database to maintain a persistent state for a period. Different request can be served by different servers, improving reliability and scalability.
3.
Cacheable:
If a response is cacheable, then a client cache is given the right to reuse that response data for later, equivalent requests. This allows to eliminate some interactions, improving efficiency, scalability, and average latency.

4.
Uniform interface:
The interface is based on an identification of resources, and allows a manipulation of resources through representations of these resources. Individual resources are identified in requests, for example using URIs. The resources themselves are conceptually separate from the representations that are returned to the client. When a client holds a representation of a resource, including any metadata attached, it should then be able to use server-provided links dynamically to discover all the available actions and has enough information to modify or delete the resource. Messages should be self-descriptive (e.g. indicate format via MIME type.
The overall system architecture is simplified and the visibility of interactions is improved. Implementations are decoupled from the services they provide, which encourages independent evolvability. The trade-off, though, is that a uniform interface degrades efficiency, since information is transferred in a standardized form rather than one which is specific to an application's needs."
5.
Layered system:
The system is composed of hierarchical layers by constraining component behaviour such that each component cannot "see" beyond the immediate layer with which they are interacting. Intermediary servers may improve system scalability by enabling load balancing and by providing shared caches. The client does not care about how the server provides the response.

6.
Code on Demand (optional):
REST allows client functionality to be extended by downloading and executing code in the form of applets or scripts. This simplifies clients by reducing the number of features required to be pre-implemented.

The practise has shown that those principles are adhered to in varying degrees by APIs that claim to be RESTful. The Richardson maturity model for REST APIs (as originally suggested by Leonard Richardson during a conference presentation [yy], see also Annex C of ETSI GS MEC 009 [zz]) defines the following compliance levels for HTTP-based REST APIs

Level 0:
A single service endpoint (e.g. API) is addressed via URI and HTTP is used as a tunnelling mechanism for remote interaction. RPCs using SOAP are mentioned as an example.

Level 1: Resources:
Individual resources are addressed via URIs. Does not make use of the different HTTP methods, but uses HTTP POST only.

Level 2: HTTP Verbs:
Using the HTTP verbs or methods as intended (e.g. POST, GET, DELETE, PUT) to keep apart different operations on resources.
Level 3: Hypermedia Controls:
Hypermedia indicate to the client what is possible to do with a resource. This helps client developers explore the protocol. The links give client developers a hint as to what may be possible next and allow the server to advertise new capabilities.
NOTE:
The API design guidelines in ETSI GS MEC 009 [zz] recommend compliance with Level 3.
5.5.2.3
Degree of Compliance of the stage 2 requirements with RPC

Stage 2 documents requirements in an RPC-like fashion: It defines "service operations" (i.e. actions described in terms of messages and their parameters).

However, stage 2 also requires that "network functions within the 5GC Control Plane shall only use service-based interfaces for their interactions". General characteristics of those "service based interfaces" are described in Clause 7 of 3GPP TS TS 23.501 [2]. Among them are requirements that an NF can expose multiple services and that one service can have several consumers. Stage 3 protocol design for a RPC solution would need to take those requirements into consideration.
In addition to those concrete requirements, stage 2 wording and related argumentation in the preparatory study also signals an intent to align with principles of a service oriented architecture, for which the use of RPCs is prone to result in a proliferation of heterogenous interfaces and methods and lack of reuse.
5.5.2.4
Degree of Compliance of the stage 2 requirements with REST

Table 5.5.2.4-1 analyses the extent to which REST principles according to Roy T. Fielding`s Dissertation [xx], as outlined in subclause 5.5.2.2 are met by the stage 2 architecture and procedures of the 5GC Control Plane.
Table 5.5.2.4-1: Compliance of 5G service based architecture with REST principles.

	REST Principle
	Compliance of 5G Service Based Architecture

	1. Client/Server
	Mostly met.
Services are defined in such a way that a provider NFs offers services to consumer NFs.
However, services can include asynchronous notifications from server to client which may need to be modelled as a separate pair of client and server with reversed roles.

	2. Stateless
	Not fully met.
Stage 2 requires that a resource at a particular server, rather than a resource at an arbitrary server, is addressed after a separate server selection via the NRF.
The server also needs to maintain some state to provide asynchronous notifications.
However, there are no stage 2 requirements to maintain a "session" state at the server on many interfaces (e.g. N8, N10, N12, N13), and other interfaces (e.g. N11, N7) can also be designed as session stateless.

	3. Cacheable
	Not fully met.
It is anticipated that most interactions will relate to resources for a particular served UE that can be changing frequently. Caching related responses would offer little benefit.
However, NFs can cache NRF responses.

	4. Uniform interface
	Can be met.
It is largely a stage 3 decision how to document interfaces and whether to document service based interface in a uniform fashion.
Adherence to level 3 of the Richardson maturity model seems possible.

	5. Layered system
	Met.
Consumer NF does not need to be aware of how producer NF provides a response.

	6. Code on Demand (optional)
	Not met.

No related stage2 requirements exist.

Table 5.5.2.4-2 analyses the REST compliance level according to Richardson maturity model, as outlined in subclause 5.5.2.2, that APIs for service based interfaces of the 5GC Control Plane could achieve.
Table 5.5.2.4-2: Achievable Richardson Maturity Levels for Restful APIs in the 5GC Control Plane.

	Level
	Restful APIs in the 5GC Control Plane

	Level 1: Resources
	It is expected that this level can be achieved to a large extent.

Stage 2 requirements are not documented in terms of resources, so additional stage 3 analysis will be required to derive resources.

Some services could map easily to resources, e.g. PDU session as resource for SMF services, or stored data as resource for UDM services.
Designing resources for some other services may require more discussions, e.g.
•
AMF services (N1N2 Message Transfer/Notify, Forward Relocation Request)

•
AUSF services (UEAuthentication Request)

•
5G-EIR services (Check ME Identity)

As a possible remedy, RPC-like resources have been defined in previous Restful APIs, e.g. the "task" resource defined in of ETSI GS MEC 009 [zz].

	Level 2: HTTP Verbs
	It is expected that this level can be achieved to a large extent.

Once resources are defined in a suitable fashion, in most cases applying suitable HTTP methods should be simple.

However, for some special resources mainly the POST HTTP might be suitable, e.g.
•
Notifications could be described as resources posted by the client, but there might not be a requirement to subsequently manipulate those resources with other HTTP methods.

•
Resources representing transferred messages at the AMF would likely also only be posted.

•
There might be a need to pass some parameters when deleting a resource (see e.g. GTP-C DSR/DBR in EPC)
Note: Also for the "task" resource defined in of ETSI GS MEC 009 [zz], only the POST method is supported,

	Level 3: Hypermedia Controls
	It is expected that this level can be achieved to a large extent.

Once resources and HTTP verbs are defined in a suitable fashion, Hypermedia can also be provided.

5.5.2.5
HTTP APIs types
The API Design Guide from Google [bb] provides general design guidelines for HTTP-based REST APIs and RPC APIs to design simple, consistent and easy-to-use APIs. Table 5.5.2.5-1 provides an overview of standard and custom API methods described in this document.

Table 5.5.2.5-1: Standard and Custom API methods

	
	Standard API methods
	Custom API methods

	Usage
	API functionality that naturally maps to one of the standard method

(CRUD operations).
	API functionality that does not naturally map to one of the standard methods

(non-CRUD operations)

	Method
	Standard method:

List, Get, Create, Update, Delete
	Custom methods

	Resource/Scope
	Applies to the resource indicated in the URI
	Can be associated with a resource, a collection (see NOTE) or a service

	HTTP mapping
	Standard HTTP method

List: GET <collection URL>

Get: GET <resource URL>

Create: POST <collection URL>

Update: PUT or PATCH <resource URL>

Delete: DELETE <resource URL>
	Custom method included in URI.

Mapped to the most suitable HTTP method (POST typically)

	Parameters
	Parameters/objects in Body or URI (e.g. search parameters in URI)
	Parameters/objects in Body

	Properties
	Large number of resources, only few methods (CRUD) allowed
	Large number of methods permitted

	API examples
	POST /Sessions/

DELETE /sessions/123456
	POST /messages:send
POST /sessions/123456:activate

	Example use cases
	CRUD operations
	Cancel an outstanding operation

Move a resource from one parent to another

Activate/Deactivate a resource

	NOTE:
A collection contains a list of resources of the same type.

5.5.2.6
Conclusions

It would be straight forward to design RPCs based on the stage 2 service / service operations documentation, but such a protocol design might not adequately match the expectation motivating the selection of service based interfaces and could also block a future evolution to a larger compliance with a Service Oriented Architecture.
Designing RESTful APIs meeting stage 2 requirements for service based interfaces seems feasible but will require more stage 3 analysis to model resources. RESTful APIs offer the advantage of homogenous, easy to use interfaces, enhanced HTTP visibility (HTTP method accessible e.g. for proxying, logging, monitoring) and a larger decoupling between client and server compared to RPCs. For some operations, an RPC like design might be necessary, but experience exist how to embed such operations in a RESTful framework (see e.g. custom methods associated with a resource in subclause 5.5.2.5, or "task resources" in API design guidelines in ETSI GS MEC 009 [zz]).
The 5GC manages resources such as UEs, sessions or database records where large number of instances exist and which can be mapped typically to simple resource operations like CRUD.
It is recommended to apply a RESTful framework for the protocol design as follows:

-
service operations that can naturally map to one of the standard method (CRUD operations) should implement the Level 2 of the Richardson maturity model, with standard API methods, whenever possible;

-
service operations that cannot map to one of the standard method (non-CRUD operations) should be designed with custom API methods.

Editor's Note: requirements and benefits of support of the Level 3 of the Richardson maturity model in the 5G Service-Based Architecture are FFS.

*** End of Changes ***
