Page 1

3GPP TSG-CT WG3 Meeting #91
C3-174049
Krakow, Poland, 21 - 25 August 2017
	5PCR-Form-v0.3

	PSEUDO CR

	
	

	(
	Spec. number:
	29.890
	Current version:
	0.2.0
	(

	Title:
(
	SBA protocol – Support of Notifications with HTTP

	
	

	Source:
 (
	Nokia, Alcatel-Lucent Shanghai Bell

	
	

	Work item code:
(
	5GS_Ph1-CT
	

	
	

	Reason for (

change:

	Various methods to implement Notifications with HTTP are in use. They need to be compared and and the most suitable method for the 5G SBA should be selected and assumed in the comparison of protocol candidates.

	
	

	Summary of
change: (
	A description of characteristics of HTTP/1.1 and HTTP.2 is added. It is being concluded that HTTP/2 shall be used if an HTTP solution is adopted for the SBA protocol.

	
	

	Consequences (
if not agreed:
	Insufficient considerations about HTTP notifications

	
	

	Other specs (
	

	affected(if any):
	

	
	

	
	

	Other comments (
	The contribution assumes headings that are added in C3-174048.

In CT4, similar changes are proposed in C4-174015.

Additional discussion(if needed):
…
Proposed changes:
*** 1st Change ***
2
References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

-
References are either specific (identified by date of publication, edition number, version number, etc.) or non‑specific.

-
For a specific reference, subsequent revisions do not apply.

-
For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same Release as the present document.

[1]
3GPP TR 21.905: "Vocabulary for 3GPP Specifications".
[2]
3GPP TS 23.501: " System Architecture for the 5G System; Stage 2".
[3]
3GPP TS 23.502: "Procedures for the 5G System; Stage 2".

[4]
3GPP TS 23.203: "Policies and Charging control architecture; Stage 2".
[5]
IETF RFC 793: "Transmission Control Protocol".

[6]
IETF RFC 5246, "The Transport Layer Security (TLS) Protocol Version 1.2".

[7]
IETF RFC 7540: "Hypertext Transfer Protocol Version 2 (HTTP/2)".
[8]
IETF RFC 7159: "The JavaScript Object Notation (JSON) Data Interchange Format".

[9]
IETF RFC 768: "User Datagram Protocol".
[10]
IETF draft-ietf-quic-transport-02: " QUIC: A UDP-Based Multiplexed and Secure Transport".

[11]
IETF draft-ietf-quic-tls-02: "Using Transport Layer Security (TLS) to Secure QUIC".

[12]
IETF draft-ietf-quic-http-02: "Hypertext Transfer Protocol (HTTP) over QUIC".

[13]
IETF draft-ietf-quic-recovery-02: "QUIC Loss Detection and Congestion Control".

[14]
IETF draft-newton-json-content-rules-08: "A Language for Rules Describing JSON Content".

[15]
IETF RFC 4960: "Stream Control Transmission Protocol".

[16]
3GPP TS 33.210: "3G security; Network Domain Security (NDS); IP network layer security".

[17]
IETF RFC 6733: "Diameter Base Protocol".

[18]
Architectural Styles and the Design of Network-based Software Architectures, UNIVERSITY OF CALIFORNIA, IRVINE, Roy Thomas Fielding, 2000.
[19]
IETF RFC 4862: "IPv6 Stateless Address Autoconfiguration".
[20]
IETF RFC 3736: "Stateless Dynamic Host Configuration Protocol (DHCP) Service for IPv6".

[21]
IETF RFC 3315: "Dynamic Host Configuration Protocol for IPv6 (DHCPv6)".
[22]
IETF RFC 2131: "Dynamic Host Configuration Protocol".

[23]
IETF RFC 1542: "Clarification and Extensions for the Bootstrap Protocol".

[24]
IETF RFC 4039: "Rapid Commit Option for the Dynamic Host Configuration Protocol version 4 (DHCPv4)".

[x1]
ETSI GS MEC 009: "MEC General principles for Mobile Edge Service APIs".
[x2]
3GPP TS 29.116: "Representational state transfer over xMB reference point between Content Provider and BM-SC".
[x3]
3GPP TS 29.251: "Gw and Gwn reference points for sponsored data connectivity".
[x4]
3GPP TS 29.155: "Representational state transfer (REST) over St reference point".
[x5]
IETF RFC 6202: "Known Issues and Best Practices for the Use of Long Polling and Streaming in Bidirectional HTTP".
[x6]
IETF RFC 6455: "The Websocket Protocol".
*** 2nd Change ***
5.5.1.1.4
Support of Notifications

5.5.1.1.4.1
General

Subclause 7.1.2 of 3GPP TS 23.501 [2] requires support of Subscribe-Notify service operations, where

-
a Control Plane NF_A (NF Service Consumer) subscribes to NF Service offered by another Control Plane NF_B (NF Service Producer).
-
NF_B notifies the results of this NF service to the interested NF(s) that subscribed to this NF service. The subscription request from consumer may include notification request for periodic updates or notification triggered through certain events (e.g., the information requested gets changed, reaches certain threshold etc.). This mechanism also covers the case where NFs (NF_B) are subscribed to certain notifications implicitly without explicit subscription request (e.g. due to successful registration procedure).

[image: image1.emf]

NF_A (Consumer)

NF_B (Producer) Producer

Subscribe

Notify

Figure 5.5.1.1.4.1-1: "Subscribe-Notify" NF Service illustration

A Control Plane NF_A may also subscribe to NF Service offered by Control Plane NF_B on behalf of Control Plane NF_C, i.e. it requests the NF Service Producer to send the event notification to another consumer(s).

[image: image2.emf]

NF_A (Consumer)

NF_B (Producer) Producer

Subscribe

Notify

NF_ C (Consumer) Producer

Figure 5.5.1.1.4.1-2: "Subscribe-Notify" NF Service on behalf of another NF Service Consumer
Subscribe/Notify service operations require bidirectional communication between the NFs.

With HTTP, a server cannot initiate a connection with a client nor send an unrequested HTTP response to a client; thus the server cannot push asynchronous events to the client.

5.5.1.1.4.2
Solution with two client-server pairs

Subscribe/Notify service operations can be supported with HTTP with two client-server pairs, one per direction, as follows:

-
NF A acts as an HTTP client and NF B as an HTTP server when NF A subscribes to NF B's notifications;

-
NF B acts as an HTTP client and NF A as an HTTP server when NF B delivers notifications to NF A;
-
with RESTful APIs, e.g. like specified in subclause 7.12 of ETSI GS MEC 009 [x1]:

-
to manage subscriptions, the server exposes a resource under which the client can request the creation/deletion of subscription resources. Those resources define criteria of subscription.

-
to receive notifications, the client exposes one or more HTTP endpoints on which the client (or another NF Service Consumer) can receive POST requests. When creating a subscription, the client shall inform the server of the endpoint to which the server will later deliver notifications related to that particular subscription.
-
to deliver notifications, the server includes the actual notification payload in the payload body of a POST request, and sends that request to the endpoint it knows from the subscription.
[image: image3.png]REST client

1. POST .../xyz_subscriptions (yzSubscription;endpoint=.../zv_sink)

REST server

2,201 Created (XyzSubscription)

<
1'(3 POST .../evt_sink (XyzNotification)

Li ¥y &

Event occurs
that matches subscription

4.204 No Content

Client does not
need subscription anymore

|5, DELETE .../xyz_subscriptions/{subscrld}

| 5. 204 No Content

REST client

REST server

Figure 5.5.1.1.4,2-1: Creation of subscriptions and delivery of a notification

NOTE:
A similar approach is also supported in some HTTP-based 3GPP interfaces, e.g. the xMB interface (see 3GPP TS 29.116 [x2]), the Gw/Gwn interfaces (see 3GPP TS 29.251 [x3]) , and the St interface (se 3GPP TS 29.155 [x4]).

-
with RPC APIs, with different RPC operations for subscribing and delivering notifications respectively.

This mechanism has the following drawbacks:

-
overhead of setting up two TCP connections;

-
requirement for the NF to act both as HTTP client and HTTP server;

-
possible need to configure operator-grade firewalls to pass TCP/TLS/HTTP.

However, most 5G NFs need to support both the roles of client and server regardless of the need to support notifications, which mitigate the above drawbacks.

5.5.1.1.4.3
Solutions with a single client-server pair prior to HTTP/2

IETF RFC 6202 [x5] documents existing workarounds and associated issues to enable server push communication on a single HTTP connection, such as

-
periodic HTTP polling from the client;

-
HTTP Long Polling where the server attempts to hold open (i.e. not immediately reply to) each HTTP request, responding only when there are events to deliver;

-
HTTP Streaming where the server keeps a request open indefinitely, i.e. it never terminates the request or close the connection, even after it pushes data to the client.

None of them provides a satisfactory solution for the SBA.

5.5.1.1.4.4
Solutions with a single client-server pair: HTTP/2 Server Push

HTTP/2 supports Server side initiated push (see subclause 8.2 of IETF RFC 7540 [7]), which allows the server to proactively push responses (along with corresponding "promised" requests) to a client in association with a previous client initiated request:
"Promised requests MUST be cacheable (see [RFC7231], Section 4.2.3), MUST be safe (see [RFC7231], Section 4.2.1), and MUST NOT include a request body. Clients that receive a promised request that is not cacheable, that is not known to be safe, or that indicates the presence of a request body MUST reset the promised stream with a stream error (Section 5.4.2) of type PROTOCOL_ERROR. Note this could result in the promised stream being reset if the client does not recognize a newly defined method as being safe.

Pushed responses that are cacheable (see [RFC7234], Section 3) can be stored by the client, if it implements an HTTP cache.

Pushed responses are considered successfully validated on the origin server (e.g., if the "no-cache" cache response directive is present ([RFC7234], Section 5.2.2)) while the stream identified by the promised stream ID is still open. Pushed responses that are not cacheable MUST NOT be stored by any HTTP cache. They MAY be made available to the application separately."

The mechanism is understood to be designed to send proactively responses into client's cache to decrease latency upon subsequent requests from that client matching the pushed responses, and not as a mechanism for the server to send notifications to the application on the client side, although the latter does not seem precluded by the very last sentence of the text quoted above ("They MAY be made available to the application separately") but is not further described (e.g. the use and handling of the promised request is not further described in such a case). Many APIs for HTTP/2, e.g. in browsers, seem to only support making pushed responses available to the application after the application provides the corresponding "promised" request.

This mechanism also has the following drawbacks:

-
it is not guaranteed to work in presence of intermediaries:

"An intermediary can receive pushes from the server and choose not to forward them on to the client. In other words, how to make use of the pushed information is up to that intermediary. Equally, the intermediary might choose to make additional pushes to the client, without any action taken by the server."

However, 3GPP standards could address this problem by putting corresponding requirements on intermediaries in their controlled environment.
-
it requires the server to generate and send a promised request for every pushes response;
While this requirement could probably be met by 3GPP standards, it would mean some overhead;

-
it requires to keep the stream of the original request of the client to the "open" or "half-closed (remote)" state with respect to the server.

5.5.1.1.4.5
Solution based on Websocket

The Websocket protocol, defined in IETF RFC 6455 [x6], provides support for bidirectional communications over a TCP connection that allows the sending of server's notifications to a client.

The main characteristics of Websocket are:

-
Opening handshake based on HTTP/1.1 (HTTP/2 not supported) using HTTP Upgread Header;
-
Followed by basic message framing (binary) on top of TCP. This is no more an HTTP connection, but just a transport connection;
-
Text or binary data can be sent over a Websocket; and
-
Provides 2 ways communication without having to open multiple HTTP connections
The main intention of Websocket is to enable signaling towards a peer behind a firewall (In a typical Web-browsing scenario, this peer sends the first HTTP requests but may need to be updated with changing contents of a Webpage later on.). However, no such firewalls are expected within the 3GPP core network. Operator grade firewalls between different core networks are expected to be configured anyway but can use security gateways to reduce the number of required connections and related configuration (see 3GPP TS 33.210 [16]).
But Websocket just provides a transport connection and is not an HTTP connection. So this solution is not further considered.
*** 3rd Change ***

5.5.1.1.8.2
Selection of Notification method

Subscribe/Notify service operations can be supported in the SBA using two client-server pairs between a consumer NF and a provider NF as specified in subclause 5.5.1.1.4.2, without any significant concern, if an HTTP solution is adopted for the SBA protocol.

*** End of Changes ***
_1550221783.doc

Notify

Subscribe

NF_B

(Producer)

Producer

NF_A

(Consumer)

_1560317426.doc

Notify

NF_A

(Consumer)

NF_C

(Consumer)

Producer

Subscribe

NF_B

(Producer)

Producer

