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*** 2nd Change ***
5.5.1.1.4
Support of Notifications

5.5.1.1.4.1
General

Subclause 7.1.2 of 3GPP TS 23.501 [2] requires support of Subscribe-Notify service operations, where

-
a Control Plane NF_A (NF Service Consumer) subscribes to NF Service offered by another Control Plane NF_B (NF Service Producer).
-
NF_B notifies the results of this NF service to the interested NF(s) that subscribed to this NF service. The subscription request from consumer may include notification request for periodic updates or notification triggered through certain events (e.g., the information requested gets changed, reaches certain threshold etc.). This mechanism also covers the case where NFs (NF_B) are subscribed to certain notifications implicitly without explicit subscription request (e.g. due to successful registration procedure).
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Figure 5.5.1.1.4.1-1: "Subscribe-Notify" NF Service illustration

A Control Plane NF_A may also subscribe to NF Service offered by Control Plane NF_B on behalf of Control Plane NF_C, i.e. it requests the NF Service Producer to send the event notification to another consumer(s).
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Figure 5.5.1.1.4.1-2: "Subscribe-Notify" NF Service on behalf of another NF Service Consumer
Subscribe/Notify service operations require bidirectional communication between the NFs. 

With HTTP, a server cannot initiate a connection with a client nor send an unrequested HTTP response to a client; thus the server cannot push asynchronous events to the client.

5.5.1.1.4.2
Solution with two client-server pairs 

Subscribe/Notify service operations can be supported with HTTP with two client-server pairs, one per direction, as follows: 

-
NF A acts as an HTTP client and NF B as an HTTP server when NF A subscribes to NF B's notifications; 

-
NF B acts as an HTTP client and NF A as an HTTP server when NF B delivers notifications to NF A;
-
with RESTful APIs, e.g. like specified in subclause 7.12 of ETSI GS MEC 009 [x1]:  

-
to manage subscriptions, the server exposes a resource under which the client can request the creation/deletion of subscription resources. Those resources define criteria of subscription. 

-
to receive notifications, the client exposes one or more HTTP endpoints on which the client (or another NF Service Consumer) can receive POST requests. When creating a subscription, the client shall inform the server of the endpoint to which the server will later deliver notifications related to that particular subscription.
-
to deliver notifications, the server includes the actual notification payload in the payload body of a POST request, and sends that request to the endpoint it knows from the subscription. 
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Figure 5.5.1.1.4,2-1: Creation of subscriptions and delivery of a notification

NOTE:
A similar approach is also supported in some HTTP-based 3GPP interfaces, e.g. the xMB interface (see 3GPP TS 29.116 [x2]), the Gw/Gwn interfaces (see 3GPP TS 29.251 [x3]) , and the St interface (se 3GPP TS 29.155 [x4]).

-
with RPC APIs, with different RPC operations for subscribing and delivering notifications respectively. 

This mechanism has the following drawbacks: 

-
overhead of setting up two TCP connections; 

-
requirement for the NF to act both as HTTP client and HTTP server;

-
possible need to configure operator-grade firewalls to pass TCP/TLS/HTTP.

However, most 5G NFs need to support both the roles of client and server regardless of the need to support notifications, which mitigate the above drawbacks. 

5.5.1.1.4.3
Solutions with a single client-server pair prior to HTTP/2

IETF RFC 6202 [x5] documents existing workarounds and associated issues to enable server push communication on a single HTTP connection, such as 

-
periodic HTTP polling from the client;

-
HTTP Long Polling where the server attempts to hold open (i.e. not immediately reply to) each HTTP request, responding only when there are events to deliver;

-
HTTP Streaming where the server keeps a request open indefinitely, i.e. it never terminates the request or close the connection, even after it pushes data to the client. 

None of them provides a satisfactory solution for the SBA.

5.5.1.1.4.4
Solutions with a single client-server pair: HTTP/2 Server Push 

HTTP/2 supports Server side initiated push (see subclause 8.2 of IETF RFC 7540 [7]), which allows the server to proactively push responses (along with corresponding "promised" requests) to a client in association with a previous client initiated request: 
"Promised requests MUST be cacheable (see [RFC7231], Section 4.2.3), MUST be safe (see [RFC7231], Section 4.2.1), and MUST NOT include a request body. Clients that receive a promised request that is not cacheable, that is not known to be safe, or that indicates the presence of a request body MUST reset the promised stream with a stream error (Section 5.4.2) of type PROTOCOL_ERROR. Note this could result in the promised stream being reset if the client does not recognize a newly defined method as being safe. 

Pushed responses that are cacheable (see [RFC7234], Section 3) can be stored by the client, if it implements an HTTP cache. 

Pushed responses are considered successfully validated on the origin server (e.g., if the "no-cache" cache response directive is present ([RFC7234], Section 5.2.2)) while the stream identified by the promised stream ID is still open. Pushed responses that are not cacheable MUST NOT be stored by any HTTP cache. They MAY be made available to the application separately."

The mechanism is understood to be designed to send proactively responses into client's cache to decrease latency upon subsequent requests from that client matching the pushed responses, and not as a mechanism for the server to send notifications to the application on the client side, although the latter does not seem precluded by the very last sentence of the text quoted above ("They MAY be made available to the application separately") but is not further described (e.g. the use and handling of the promised request is not further described in such a case). Many APIs for HTTP/2, e.g. in browsers, seem to only support making pushed responses available to the application after the application provides the corresponding "promised" request. 

This mechanism also has the following drawbacks:

-
it is not guaranteed to work in presence of intermediaries: 

"An intermediary can receive pushes from the server and choose not to forward them on to the client. In other words, how to make use of the pushed information is up to that intermediary. Equally, the intermediary might choose to make additional pushes to the client, without any action taken by the server."

However, 3GPP standards could address this problem by putting corresponding requirements on intermediaries in their controlled environment.
-
it requires the server to generate and send a promised request for every pushes response;
While this requirement could probably be met by 3GPP standards, it would mean some overhead;

-
it requires to keep the stream of the original request of the client to the "open" or "half-closed (remote)" state with respect to the server. 

5.5.1.1.4.5
Solution based on Websocket 

The Websocket protocol, defined in IETF RFC 6455 [x6], provides support for bidirectional communications over a TCP connection that allows the sending of server's notifications to a client. 

The main characteristics of Websocket are:

-
Opening handshake based on HTTP/1.1 (HTTP/2 not supported) using HTTP Upgread Header; 
-
Followed by basic message framing (binary) on top of TCP. This is no more an HTTP connection, but just a transport connection;
-
Text or binary data can be sent over a Websocket; and
-
Provides 2 ways communication without having to open multiple HTTP connections 
The main intention of Websocket is to enable signaling towards a peer behind a firewall (In a typical Web-browsing scenario, this peer sends the first HTTP requests but may need to be updated with changing contents of a Webpage later on.). However, no such firewalls are expected within the 3GPP core network. Operator grade firewalls between different core networks are expected to be configured anyway but can use security gateways to reduce the number of required connections and related configuration (see 3GPP TS 33.210 [16]).
But Websocket just provides a transport connection and is not an HTTP connection. So this solution is not further considered.
*** 3rd Change ***

5.5.1.1.8.2
Selection of Notification method

Subscribe/Notify service operations can be supported in the SBA using two client-server pairs between a consumer NF and a provider NF as specified in subclause 5.5.1.1.4.2, without any significant concern, if an HTTP solution is adopted for the SBA protocol.

*** End of Changes ***
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