Page 1

3GPP TSG-CT WG3 Meeting #91
C3-174281
Krakow, Poland, 21 - 25 August 2017
	5PCR-Form-v0.3

	PSEUDO CR

	
	

	(
	Spec. number:
	29.122
	Current version:
	0.1.0
	(

	Title:
(
	Notifications

	
	

	Source:
 (
	Nokia, Alcatel-Lucent Shanghai Bell

	
	

	Work item code:
(
	NAPS-CT
	

	
	

	Reason for (

change:

	At the last CT3 meeting, a decision on the method used to convey Notifications was postponed. Concerns were raised that for an SCS/AS behind a firewall (Such a deployment scenario could for insctance occur for public saftey use cases.), the notification delivery using a separate HTTP connection established by the SCEF could fail.

	
	

	Summary of

change: (
	Notification delivery using a separate HTTP connection is mandatory to support.
Notification delivery using Websocket is optional to support. For the Websocket delivery, a separate connection established by the SCS/AS is used to avoid that the HTTP communication where the SCEF acts as server is also converted to Websocket. A negotiation mechanism of the notification method is provided.

	
	

	Consequences (

if not agreed:
	Decision about the Notification method is not reached.

	
	

	Other specs (
	

	affected(if any):
	

	
	

	
	

	Other comments (
	

Additional discussion(if needed):
Solution with two client-server HTTP connections

Subscribe/Notify service operations can be supported with HTTP with two client-server pairs, one per direction, as follows:

-
NF A acts as an HTTP client and NF B as an HTTP server when NF A subscribes to NF B's notifications;

-
NF B acts as an HTTP client and NF A as an HTTP server when NF B delivers notifications to NF A;
-
with RESTful APIs, e.g. like specified in subclause 7.12 of ETSI GS MEC 009:

-
to manage subscriptions, the server exposes a resource under which the client can request the creation/deletion of subscription resources. Those resources define criteria of subscription.

-
to receive notifications, the client exposes one or more HTTP endpoints on which the client (or another NF Service Consumer) can receive POST requests. When creating a subscription, the client shall inform the server of the endpoint to which the server will later deliver notifications related to that particular subscription.
-
to deliver notifications, the server includes the actual notification payload in the payload body of a POST request, and sends that request to the endpoint it knows from the subscription.
[image: image1.png]REST client

1. POST .../xyz_subscriptions (yzSubscription;endpoint=.../zv_sink)

REST server

2,201 Created (XyzSubscription)

<
1'(3 POST .../evt_sink (XyzNotification)

Li ¥y &

Event occurs
that matches subscription

4.204 No Content

Client does not
need subscription anymore

|5, DELETE .../xyz_subscriptions/{subscrld}

| 5. 204 No Content

REST client

REST server

Figure 5.5.1.1.4,2-1: Creation of subscriptions and delivery of a notification

NOTE:
A similar approach is also supported in some HTTP-based 3GPP interfaces, e.g. the xMB interface (see 3GPP TS 29.116), the Gw/Gwn interfaces (see 3GPP TS 29.251) , and the St interface (se 3GPP TS 29.155).

-
with RPC APIs, with different RPC operations for subscribing and delivering notifications respectively.

This mechanism has the following drawbacks:

-
overhead of setting up two TCP connections;

-
requirement for the NF to act both as HTTP client and HTTP server;

-
possible need to configure firewalls to pass TCP/TLS/HTTP.

Solutions with a single client-server pair prior to HTTP/2

IETF RFC 6202 documents existing workarounds and associated issues to enable server push communication on a single HTTP connection, such as

-
periodic HTTP polling from the client;

-
HTTP Long Polling where the server attempts to hold open (i.e. not immediately reply to) each HTTP request, responding only when there are events to deliver;

-
HTTP Streaming where the server keeps a request open indefinitely, i.e. it never terminates the request or close the connection, even after it pushes data to the client.

Solutions with a single client-server pair: HTTP/2 Server Push

HTTP/2 supports Server side initiated push (see subclause 8.2 of IETF RFC 7540), which allows the server to proactively push responses (along with corresponding "promised" requests) to a client in association with a previous client initiated request:
"Promised requests MUST be cacheable (see [RFC7231], Section 4.2.3), MUST be safe (see [RFC7231], Section 4.2.1), and MUST NOT include a request body. Clients that receive a promised request that is not cacheable, that is not known to be safe, or that indicates the presence of a request body MUST reset the promised stream with a stream error (Section 5.4.2) of type PROTOCOL_ERROR. Note this could result in the promised stream being reset if the client does not recognize a newly defined method as being safe.

Pushed responses that are cacheable (see [RFC7234], Section 3) can be stored by the client, if it implements an HTTP cache.

Pushed responses are considered successfully validated on the origin server (e.g., if the "no-cache" cache response directive is present ([RFC7234], Section 5.2.2)) while the stream identified by the promised stream ID is still open. Pushed responses that are not cacheable MUST NOT be stored by any HTTP cache. They MAY be made available to the application separately."

The mechanism is understood to be designed to send proactively responses into client's cache to decrease latency upon subsequent requests from that client matching the pushed responses, and not as a mechanism for the server to send notifications to the application on the client side, although the latter does not seem precluded by the very last sentence of the text quoted above ("They MAY be made available to the application separately") but is not further described (e.g. the use and handling of the promised request is not further described in such a case). Many APIs for HTTP/2, e.g. in browsers, seem to only support making pushed responses available to the application after the application provides the corresponding "promised" request.

This mechanism also has the following drawbacks:

-
it is not guaranteed to work in presence of intermediaries:

"An intermediary can receive pushes from the server and choose not to forward them on to the client. In other words, how to make use of the pushed information is up to that intermediary. Equally, the intermediary might choose to make additional pushes to the client, without any action taken by the server."

However, 3GPP standards could address this problem by putting corresponding requirements on intermediaries in their controlled environment.
-
it requires the server to generate and send a promised request for every pushes response;
While this requirement could probably be met by 3GPP standards, it would mean some overhead;

-
it requires to keep the stream of the original request of the client to the "open" or "half-closed (remote)" state with respect to the server.

Solution based on Websocket

The Websocket protocol, defined in IETF RFC 6455, provides support for bidirectional communications over a TCP connection that allows the sending of server's notifications to a client.

The main characteristics of Websocket are:

-
Opening handshake based on HTTP/1.1 (HTTP/2 not supported) using HTTP Upgread Header;
-
Followed by basic message framing (binary) on top of TCP. This is no more an HTTP connection, but just a transport connection;
-
Text or binary data can be sent over a Websocket; and
-
Provides 2 ways communication without having to open multiple HTTP connections
The main intention of Websocket is to enable signaling towards a peer behind a firewall (In a typical Web-browsing scenario, this peer sends the first HTTP requests but may need to be updated with changing contents of a Webpage later on.). However, no such firewalls are expected within the 3GPP core network. Operator grade firewalls between different core networks are expected to be configured anyway but can use security gateways to reduce the number of required connections and related configuration (see 3GPP TS 33.210).
But Websocket just provides a transport connection and is not an HTTP connection. Framing needs to be defined separately for each application.

In most deployments. The HTTP connection is upgrade to Websocket at connection establishment is not used for any further communication including requests from the client to the server and their responses. Such communication cannot be regarded to be Restful.

In the present contribution, it is rather suggested that a separate HTTP connections for Notifications is established and upgraded to Websocket, while the main HTTP connection for Restful communication with the SCEF acting as HTTP server is not impacted.
Proposed changes:
*** 1st Change ***

5.2.5
Notifications
5.2.5.1
General

The SCEF and SCS/AS shall support the delivery of Notifications using a separate HTTP connection towards an address as assigned the SCS/AS described in subclause 5.2.4.2.
Editor´s Note
:Other notification methods that enable a traversal of firewalls at the client side, for instance Websocket (see IETF RFC 6455), are ffs. A framing format for the notifications within the Websocket protocol would then need to be defined. It is desired to exchange similar message as the HTTP messages for the Notification Delivery using a separate HTTP connection in subclause 5.2.4.2.
5.2.5.2
Notification Delivery using a separate HTTP connection
If a delivery of notifications is required for an API, the SCS/AS shall provide an URI designating where to send HTTP Notifications to the SCEF.

NOTE:
The encoding of the URI in the resources of each API requiring Notifications is defined in Clause 5.

The SCEF shall take the role of the HTTP client on the HTTP connection for the delivery of Notifications. Subclause 5.2.2 shall also apply for this HTTP connection with the exception that an SCEF (rather than an SCS/AS) desiring to use HTTP/2 shall use the HTTP upgrade mechanism to negotiate applicable HTTP version.

*** End of Changes ***

