3GPP TSG-CT WG3 Meeting #39

C3-060043
Denver, USA, 13th – 17th February 2006
Source:
Ericsson
Title:
RTP Multiplexing on Nb- and Iu-interface
Agenda item:
11.11
Document for:
Discussion and Approval

Introduction

This document is related to the discussion on RTP multiplexing on Nb that is ongoing in CT3.

Multiplexing can offer a relatively simple way to increase bandwidth efficiency in an IP network. It should be simple since multiplexing should not necessarily require any additional features from the network and even as little as multiplexing of two packets could save bandwidth significantly. The main requirements are that the destination address and DiffServ class should be the same for all multiplexed packets.
Real-time applications like speech have also strict requirements for e.g. delay and jitter, which have to be taken into consideration. The differentiation of streams in an efficient way is important together with the fact that the multiplexing protocol should not restrict the maximum number of possible connections between any two nodes (e.g. MGWs).
This document proposes a new multiplexing method designed for speech traffic transported over IP in a 3GPP UMTS network over Nb-interface between MGWs or over Iu-interface between an RNC and MGW. The method introduces a multiplexing header, which identifies every multiplexed packet. The traffic is assumed to be real-time and the DiffServ class is then the same for all packets. The destination is then the only distinguishing feature. Multiplexing can be performed for all packets heading to the same IP address and this particular method can be used for all UDP traffic as long as they share the same DiffServ class.

Stream differentiation
In an IP network defining an UDP port for each connection separates different RTP streams. To identify different streams in a multiplexed packet a multiplexing header is needed and the simplest way of identifying multiplexed packets is therefore to include the UDP destination port in the multiplexing header. Since the UDP port is included as a whole no additional mapping tables are needed.
One UDP port is assigned as the multiplexing port into which all multiplexed packets are sent. The receiver knows then when a packet contains multiplexed packets. This UDP port is proposed to be 1024 (the first unassigned port in the UDP port space). Since this port will then be reserved for multiplexing it is not allowed to be assigned to any individual connections and the port will thus receive only multiplexed packets.

Proposed format for multiplexed IP packet

The UDP port alone is not enough since it does not indicate where the next multiplexed packet starts (AMR or PCM may be used with different lengths). A length indicator (LI) field is thus included in the multiplexing header. The proposed multiplexing header is illustrated in Figure 1.
[image: image1.emf]MUX ID

LI

2 bytes1 byte

MUX ID

LI

2 bytes1 byte

Figure 1
Multiplexing header
The multiplexing header includes

· Mux ID, 16 bits. For identification of different connections. Value is the same as the UDP destination port of a non-multiplexed packet.

· Length Indicator (LI), 8 bits. Gives the length of the multiplexed RTP packet in bytes (header + payload). Maximum length is 256 bytes (requires padding if last byte is not full). E.g. the payload of AMR 12.2 is only 31 bytes but for future use 8-bit LI may be useful (combined payload of four 5 ms PCM samples resulting in 160 bytes has been proposed). LI gives the information where the next multiplexed packet starts.
The multiplexing can be performed either with common IP/UDP/RTP or IP/UDP header. For voice traffic in a 3GPP network the RTP information is essential and it is thus suggested that entire RTP frames are multiplexed and they together share a common IP/UDP header in Nb- and Iu-interfaces (Figure 2). If the packets shared a common IP/UDP/RTP header the bandwidth savings would naturally be greater and it could be used in some special cases where individual RTP information is not needed.

[image: image2.emf]MUX (3)UDP (8)IP (20 / 40 bytes)

RTP (12)

Common header

NbUP frame (9…)MUX (3)

RTP (12)

NbUP frame (9…)

1. MUX packet 2. MUX packet

UDP dest.

Port: 1024

NbUP frame (9…)UDP (8)IP (20 / 40 bytes)RTP (12)

NbUP frame (9…)UDP (8)IP (20 / 40 bytes)RTP (12)

UDP dest.

Port: xxxx

UDP dest.

Port: yyyy

UDP dest.

Port: xxxx

UDP dest.

Port: yyyy

max 256 bytes

MUX (3)UDP (8)IP (20 / 40 bytes)

RTP (12)

Common header

NbUP frame (9…)MUX (3)

RTP (12)

NbUP frame (9…)

1. MUX packet 2. MUX packet

UDP dest.

Port: 1024

NbUP frame (9…)UDP (8)IP (20 / 40 bytes)RTP (12)

NbUP frame (9…)UDP (8)IP (20 / 40 bytes)RTP (12)

UDP dest.

Port: xxxx

UDP dest.

Port: yyyy

UDP dest.

Port: xxxx

UDP dest.

Port: yyyy

max 256 bytes

Figure 2
Example of multiplexed packet with two RTP frames
There is no limitation for the number of packets being multiplexed. An IP datagram has a maximum length of 65535 bytes and Ethernet 1500 bytes meaning that the Ethernet frame size is in practice what limits the multiplexing. In order to avoid additional delay in the network the packets should not be delayed more than 1ms, which also effectively limits the number of multiplexed packets and makes the multiplexing-jitter low. The time frame should still be enough to gather several packets.
The bandwidth decreases in different cases are illustrated in Table 1. In PoS cases the network is assumed to use double MPLS framing (VPN and traffic type differentiation) and Ethernet is assumed to use VLAN tag.

Table 1
Bandwidths with AMR12.2 (60% activity factor) without and with multiplexing (2 or 10 RTP frames, common IP/UDP header)
[image: image3.wmf]35,10

29,90

28,08

22,88 kbps

BW ref

31 %

28 %

26 %

21 %

Decrease

14,82

14,30

14,12

13,60 kbps

BW, 10 pkts

58 %

52 %

50 %

41 %

Decrease

24,18

21,58

20,67

18,07 kbps

BW, 2 pkts

Eth, IPv6

Eth, IPv4

PoS, IPv6

PoS, IPv4

35,10

29,90

28,08

22,88 kbps

BW ref

31 %

28 %

26 %

21 %

Decrease

14,82

14,30

14,12

13,60 kbps

BW, 10 pkts

58 %

52 %

50 %

41 %

Decrease

24,18

21,58

20,67

18,07 kbps

BW, 2 pkts

Eth, IPv6

Eth, IPv4

PoS, IPv6

PoS, IPv4

RTP header compression
To achieve even better bandwidth savings the RTP header can be compressed. This is possible since RTP header includes many static fields that remain unchanged during an RTP session. Compression should be used as an additional method so that it is always possible to go back to pure multiplexing in case of unordinary circumstances. Compression shall be an optional feature. All RTP header compressed multiplexed packets are proposed to be sent into the UDP port 1026 and it is used in the same way as port 1024 in normal multiplexing.

In compression there is always an initialization phase first where the full header is transferred to receiver. The full header is stored and it is used in decompression. After initialization only compressed headers are sent unless information changes too much. Then a full header is sent. Proposed multiplexing header for RTP header compression case is shown in Figure 3.

[image: image4.emf]MUX IDLI

15 bits8 bits

T

1 bit

MUX IDLI

15 bits8 bits

T

1 bit

Figure 3
Multiplexing header in RTP header compression
The multiplexing header includes

· Type field (T), 1 bit. The field has two possible states, 0 for indicating full packet and 1 for indicating compressed packet.

· MUX ID, 15 bits. For identification of different connections. Value is the same as the UDP destination port of a non-multiplexed packet divided by two (only even numbered ports are used for RTP sessions).

· Length Indicator (LI), 8 bits. Gives the length of the multiplexed RTP packet in bytes (header + payload).
The RTP header compression mechanism presented here is an example and other mechanisms may be also used. The proposed RTP header contains two fields that change during a connection and need to be transferred within each packet, sequence number and timestamp. Both fields change however in a well defined way. Sequence number steps by one with every sent packet indicating any packet losses and timestamp depicts the time difference between consecutive packets. Figure 4 illustrates the proposed format of a compressed RTP header.
[image: image5.emf]SNTS

3 bits5 bits

SNTS

3 bits5 bits

Figure 4
Compressed RTP header
The compressed RTP header includes

· Sequence number (SN), 3 bits. The field changes as the original sequence number but has only 8 states, which should be well enough since packets are sent in a very low BER networks. If the field is however inadequate, a full RTP header should be used.

· Timestamp (TS), 5 bits. The TS field changes basically as the original timestamp but the actual time difference of one step depends on the payload type since the type is known based on the initialization messages. One step of the TS field in compressed RTP header signifies 80 steps (5 ms x 16 kHz = 80) for PCM voice and 320 steps (20 ms x 16 kHz = 320) for AMR coded voice when converted to original steps in a timestamp field. If the TS field is for some reason inadequate, a full RTP header should be used.
[image: image6.emf]MUX (3)UDP (8)IP (20 / 40 bytes)

Compr. RTP (1)

Common header

NbUP frame (9…)MUX (3)NbUP frame (9…)

1. MUX packet 2. MUX packet

Compr. RTP (1)

UDP dest.

Port: 1026

MUX (3)UDP (8)IP (20 / 40 bytes)

Compr. RTP (1)

Common header

NbUP frame (9…)MUX (3)NbUP frame (9…)

1. MUX packet 2. MUX packet

Compr. RTP (1)

MUX (3)UDP (8)IP (20 / 40 bytes)

Compr. RTP (1)

Common header

NbUP frame (9…)MUX (3)NbUP frame (9…)

1. MUX packet 2. MUX packet

Compr. RTP (1)

UDP dest.

Port: 1026

Figure 5
Example of multiplexed packet with two RTP frames and compressed RTP headers

The bandwidth decreases with the same assumptions as in the normal case are shown in Table 2.
Table 2
Bandwidths with AMR12.2 (60% activity factor) without and with multiplexing (2 or 10 RTP frames, common IP/UDP header) with compressed RTP header
[image: image7.emf]35,1029,9028,0822,88 kbpsBW ref

39 %37 %37 %34 %Decrease

11,9611,4411,2610,74 kbpsBW, 10 pkts

66 %62 %60 %53 %Decrease

21,3218,7217,8115,21 kbpsBW, 2 pkts

Eth, IPv6Eth, IPv4PoS, IPv6PoS, IPv4

35,1029,9028,0822,88 kbpsBW ref

39 %37 %37 %34 %Decrease

11,9611,4411,2610,74 kbpsBW, 10 pkts

66 %62 %60 %53 %Decrease

21,3218,7217,8115,21 kbpsBW, 2 pkts

Eth, IPv6Eth, IPv4PoS, IPv6PoS, IPv4

Multiplexing applicability detection

The bearer initialization phase in both Nb- and Iu-interfaces include mandatory messages for the support mode that is used e.g. for speech traffic. Nb/Iu UP PDU Type 14 is used at initialization and the messages include spare extension fields (both initialization and acknowledgement frames) that can be used for any additional function and this field is proposed to be used for multiplexing applicability detection. The field is proposed to be one byte long from which two first bytes are used for multiplexing detection and the rest six are spared for future use (Figure 6). The transparent mode in the Iu-interface would not support multiplexing since it has no initialization phase but it is not used for speech applications and these are the most common traffic type in CS domain.
When an MGW or RNC supports multiplexing it sets the first bit (MUX in Figure 6) to 1 in the spare extension field of the initialization frame and from that bit the receiving node knows that multiplexing can be used. If the receiving node supports multiplexing it replies in the same way with the first bit set to 1 in the spare extension field of the positive acknowledgement message and again the other end knows that multiplexing can be used. If the receiving node does not support it just ignores the spare extension in the initialization and sends a regular acknowledgement. The MGW or RNC that started the initialization knows then not to use multiplexing.
Since a node may support multiplexing but not RTP header compression there must be separate initializations. While the first bit stands for normal multiplexing, the RTP header compression possibility is indicated with the second bit (MUX & RTP c in Figure 6). The destination node can now reply in three ways. Responding with the second bit it indicates that the RTP header compression may be used. It may however reply also with the first bit meant for normal multiplexing or reply without any multiplexing indications.
For Nb interface there already is a standardized protocol for bearer control, IP Bearer Control Protocol (IPBCP), and it could be used also for detecting multiplexing applicability. IPBCP however cannot be used for Iu-interface and therefore UP initialization as a more common solution is better for initializing multiplexing. In general the applicability detection can be seen as a migration phase function, which could be left out when all nodes support multiplexing. After that multiplexed packets could be always detected based on the UDP port (1024 for normal multiplexed packets and 1026 for multiplexed packets with RTP header compression).
	Bits

	Number of Octets

	7
	6
	5
	4
	3
	2
	1
	0
	

	PDU Type (=14)
	Ack/Nack (=0. I.e. Procedure)
	PDU Type 14 Frame Number
	1
	Frame Control Part

	Iu UP Mode version
	Procedure Indicator (=0)
	1
	

	Header CRC
	Payload CRC
	2
	Frame Checksum part

	Payload CRC
	
	

	Spare
	TI
	Number of subflows per RFCI (N)
	Chain Ind
	1
	Frame payload part

	LRI
	LI
	1st RFCI
	1
	

	Length of subflow 1
	1 or 2 (dep. LI)
	

	Length of subflow 2 to N
	(N-1)x(1 or 2)
	

	LRI
	LI
	2nd RFCI
	1
	

	Length of subflow 1
	1 or 2 (dep. LI)
	

	Length of subflow 2 to N
	(N-1)x(1 or 2)
	

	…
	
	

	IPTI of 1st RFCI
	…
	0 or M/2 (M: Number of RFCIs in frame). Ended by 4 padding bits if M is odd.
	

	…
	IPTI of Mth RFCI or Padding
	
	

	Iu UP Mode Versions supported (bitmap)
	2
	

	Data PDU type
	Spare
	1
	

	Spare
	MUX & RTP c
	MUX
	1
	

Figure 6
UP PDU Type 14 used for initialization with one byte spare extension field for multiplexing detection (last octet)
Comparison to Alcatel and Siemens proposals

The differences between the multiplexing method described and methods proposed by Alcatel and Siemens are listed in Table 3.
Table 3
Comparison of different multiplexing methods
	
	Ericsson
	Siemens
	Alcatel

	Common header
	IP/UDP
	IP/UDP/RTP
	IP/Protocol Version Octet

	IP header
	As specified by IETF
	As specified by IETF
	Proposes new protocol id -> requires IETF specification

	UDP header
	As specified by IETF
	As specified by IETF
	Pruned, MUX header contains only UDP destination port and the rest is left out e.g. no UDP checksum

	RTP header
	As specified by IETF, individual RTP header carried per session
	As specified by IETF, but against the “spirit” of IETF. Connections do not have individual RTP header (RTP part of common header) and session information is thus not carried along.
	Pruned, MUX header contains e.g. timestamp and sequence number. Part of the information left out.

	Detection of multiplexed packets
	Fixed UDP port for multiplexed packets
	Assumes identification by the IP address port pairs
	New protocol id

	Multiplexing header
	3 bytes: MUX ID + Length
	3 bytes: MUX ID, Length, Time offset
	6/7 bytes: pruned UDP/RTP

	Connection identification
	MUX ID has the value of connections original UDP destination port -> no mapping required
	MUX ID space 256 -> requires mapping of connections
	Bearer ref. is the connections original UDP dest. port divided by 2 -> no mapping required

	Multiplexing applicability detection
	Using UP INIT, no additional standardizing/ modification needed.
	Using IPBCP, requires modification of IPBCP
	Using IPBCP, requires modification of IPBCP

	Other issues
	Includes optional RTP header compression mechanism for additional bandwidth savings.
Can be used also on Iu-interface.
	Time offset field could be used to generate timestamp per session but all other session information still lost.
	

Conclusion
Ericsson proposes to introduce multiplexing with optional RTP header compression as described for Nb- and Iu-interface.
Multiplexing method as described is also applicable with IMS since there are no special requirements for the network. The method has however been designed for the Nb- and Iu-interfaces and IMS would require a different kind of initialization mechanism with SIP.
