
3GPP TSG-CT WG3 Meeting #134	C3-242230
Changsha, China, 15th – 19th April, 2024
Source:	Ericsson
Title:	Discussion on merging heterogeneous Northbound APIs in Stage 3. In response to C3-241392.
Document for:	Discussion & Agreement
Agenda Item:	
Work Item / Release:	NBI18, ADAES / Rel-18
Abstract of the contribution:
1	Decision/action requested
Discuss the possible ways and guidance on merging the heterogeneous APIs in Stage 3. Agree on the proposed way.
2	References
[1]	C3-241392, Discussion on the stage 3 design for the A-ADRF APIs: https://www.3gpp.org/ftp/tsg_ct/WG3_interworking_ex-CN3/TSGC3_133_Athens/Docs/C3-241392.zip
[2]	3GPP TS 29.500 "5G System; Technical Realization of Service Based Architecture; Stage 3"
[3]	3GPP TS 29.549 " 	Service Enabler Architecture Layer for Verticals (SEAL); Application Programming Interface (API) specification; Stage 3"
3	Rationale
In the CT3#132e and CT3#133 meetings, the CT3 group discussed the design of A-ADRF API(s) under ADAES Work Item. The ongoing discussion is focused on selection of the appropriate API design for the SS_AADRF_DataManagement API. This discussion paper aims to summarize the ongoing discussion and provide a way forward.
4	Discussion
4.1	Background information
This section of the discussion paper provides the required background information for the discussion including:
1) feature negotiation mechanism;
2) provisioning of the supported features in CAPIF; and
3) handling of the unknow IEs during the request processing.
This section also includes observations and conclusions.
4.1.1	Feature negotiation
The feature negotiation is the well known as “extensibility” mechanism defined in 3GPP TS 29.500 [2]. However, it is a generic mechanism introduced in Rel-8 to indicate the optional functionality of the API. During the feature negotiation service consumer may request the service producer to enable the support of list of features. Each feature represents an API functionality that affects the service producer behaviour, e.g., service producer logic and API inputs/outputs.
It is well known practice when the feature negotiation mechanism is used for indication of the supported API functionality(-ies):
1) SS_Events API in 3GPP TS 29.549 from Release-16 (this API was introduced in Release-16) is using the feature negotiation mechanism to indicate the supported event(s). The SS_Events API is a merged API based on 6 Stage 2 APIs.
2) MonitoringEvent API (see clause 5.3.4 of 3GPP TS 29.122) from Release-15 is using the feature negotiation mechanism to indicate the supported event(s). The MonitoringEvent API is a merged API based on many Stage 2 APIs.
Observation 1:	The feature negotiation mechanism is commonly used in Northbound APIs to indicate the set of the supported optional API functionality(-ies).
4.1.2	Provisioning of the supported features in NRF and CAPIF
NRF and CAPIF are the NF and Northbound API registries, respectively.
3GPP TS 29.500 provides recommendation for the NFs to register the supported features in NRF in order to assist NF Service Consumers to discover NF Service Producers supporting specific features:
Additionally, a NF instance should register all the features it supports to the NRF, to enable NF Service Consumers to discover NF Service Producers supporting specific features. A NF instance should register all the features it supports as NF Service Consumer in the corresponding default notification subscription in its NF profile to the NRF, to enable NF Service Producer to select NF Service Consumer supporting specific features.
3GPP TS 29.122 supports the API publishing (see clause 8.2.4.2.2 of 3GPP TS 29.222) and the API discovery (see clause 8.1.2.2.3.1 of 3GPP TS 29.222) with the supported features set.
Observation 2:	The API (NF) supported feature provisioning and API (NF) discovery based on the supported features are integrated in 3GPP API and NF registries (i.e., CAPIF and NRF, respectively) in order to assist a service consumer to discover the proper service producer.
4.1.3	Handling of the unknown IEs
Clause 5.2.7.2 of 3GPP TS 29.500 specifies the NF behaviour as HTTP Server. Clause 5.2.7.2 of 3GPP TS 29.500 specifies also specifies the behaviour of the NF when the “unknown IEs” are received in the request message:
If a received HTTP request contains unknown IEs, i.e. Information Elements within the JSON body, the NF may discard such IEs and shall process the rest of the request message, unless the schema definition of the received message prohibits the presence of additional IEs or constrains their types. There are cases (e.g. Nnrf_NFManagement API) where the receiver of certain HTTP requests needs to process unknown IEs (e.g. to store in NRF an NF Profile containing vendor-specific attributes, and send them in NFDiscovery results).
The text in bold above specifies that the NF can ignore “unknown IEs” if this does not affect the response for the service consumer according to the 3GPP specification. This mechanism is used for the backward compatibility with the previous Releases. Also, backward compatibility between releases is supported by a feature negotiation; thus, the service consumer has a mechanism to verify the relevance of the received response with the service producer functionality.
Observation 3:	The service consumer may ignore the “unknown IEs” for backward compatibility considerations between releases; however, this mechanism is not applicable for the API design in the initial release.
4.2	On design of the SS_AADRF_DataManagement API
This section describes the proposed design and considerations for the SS_AADRF_DataManagement API.
4.2.1	Analysis of Stage 2 requirements
The SS_AADRF_DataManagement API is based on five stage 2 APIs:
-	SS_AADRF_Data_Collection API. This API enables the ADAE server to communicate with the A-ADRF for subscribing for offline data collection and for getting notified about the offline data/statistics.
-	SS_AADRF_Historical_serviceAPI_logs API. This API enables the ADAE server to communicate with the A-ADRF for requesting service API logs and receiving the offline data/statistics on API logs.
-	SS_AADRF_NetworkSlice_data API. This API enables the ADAE server to communicate with the A-ADRF for requesting and receiving network slice data.
-	SS_AADRF_EdgeData_Collection API. This API enables the ADAE server to communicate with the A-ADRF for subscribing for edge data collection and for getting notified about the offline data/statistics for the EDN and/or EAS/EES.
-	SS_AADRF_Location_Accuracy API. This API enables the ADAE server to communicate with the A-ADRF to request location analytics/data for VAL UEs or VAL service area.
The A-ADRF APIs have different communication types:
-	Subscribe/Notify is applicable for SS_AADRF_Data_Collection and SS_AADRF_EdgeData_Collection APIs.
-	Request/Response is applicable for SS_AADRF_Historical_ServiceAPI_Logs, SS_AADRF_NetworkSlice_Data, and SS_AADRF_Location_Accuracy_Data APIs.
Observation 4:	Stage 2 designed A-ADRF APIs as separate APIs that enables flexible A-ADRF implementation, e.g., A-ADRF implementation can support a subset of APIs.
Observation 5:	Stage 2 A-ADRF APIs are focused on different stored data and have different communication types that shall be taken under consideration during the APIs merging in Stage 3.
4.2.2	On design of the SS_AADRF_DataManagement API
As a first step, let’s evaluate the granularity of the SS_AADRF_DataManagement API functionality.
The SS_AADRF_DataManagement API provides access to the five events where each event represents the Stage 2 API functionality:
· Data collection.
· History of service API logs.
· Network Slice Data.
· Edge Data.
· Location Accuracy Data.
Observation 6:	The support of each event represents ~20 percent of the the SS_AADRF_DataManagement functionality.
The second step is to address the stage 2 requirements described in Section 4.2.1, i.e., flexible A-ADRF implementation that support a subset of Stage 2 APIs and different communication type, in conjunction of existing Stage 3 mechanisms feature negotiation, CAPIF, etc.
Conclusion:	The design of the SS_AADRF_DataManagement API shall:
-	enable the possibility to support a sub-set of optional events to address the (Observation 4); that is commonly implemented in Stage 3 via the feature negotiation mechanism (Observation 1);
-	enable the possibility to provision the supported events to the service consumer before the API invocation; that is commonly implemented in Stage 3 via the provisioning the supported features in CAPIF or NRF (Observation 2). However, the “ignore unknown IE” mechanism (Observation 3) is not applicable for the indication of optionally supported events due to any unsupported event may lead to the rejection of the valid request (Observation 6)
-	enable the support of both subscribe-notify and the request response communication type (Observation 5); that is commonly done in Stage 3 via one-time immediate report mechanism.
4.2.3	Detailed proposals
Based on provided observations and conclusion, Ericsson the following proposals the on the way forward for the SS_AADRF_DataManagement API design.
Proposal 1:	Apply the feature negotiation mechanism to the SS_AADRF_DataManagement API in order to align with existing practices for the Northbound API design.
Proposal 2:	Implement the A-ADRF APIs as separate APIs according to the SA6 design.
4.2.3	In response to C3-241392
The approach described in discussion paper C3-241392 has major and explicit disadvantage compared to the feature negotiation mechanism in the following scenario.
Given: An API invoker utilizing the CAPIF to discover the A-ADRF APIs related to Edge data.
When: The API invoker discovers a list of the merged A-ADRF APIs via CAPIF
Then:
1	The API invoker invokes the first API in the discovered API list, and the API implementation ignores the request configuration provided by the API invoker as described in the discussion paper C3-241392. As a result, the API invoker will never receive any valid response.
2	The API invoker repeats step (1) until the API number X in the discovered API list supports the edge-related data.
Analysis: the API invoker experience high energy consumption and many rejections of service caused by the 3GPP API discovery service due to non-user-friendly API design.
Evaluation of Ericsson's proposals:
Given: An API invoker utilizing the CAPIF to discover the A-ADRF APIs related to Edge data.
When: The API invoker discovers a list of the (merged A-ADRF APIs via CAPIF with the supported feature "EdgeData") or (dedicated A-ADRF API for Edge data).
Then:
1	The API invoker invokes the first API in the list, and API implementation provides the valid response.
Analysis: the API invoker receives the relevant response from the first discovered API.
5	Conclusion
This discussion paper provided the analysis of existing Stage 3 mechanisms for the API design, Stage 2 requirements for the A-ADRF APIs, detailed proposal for the SS_AADRF_DataManagement API design, and evaluation of the different proposals.
Based on the provided information and justifications, Ericsson prefers the Proposal 1 and proposes to discuss and agree the CR C3-24AAAA as possible way forward.

