

Page 4

[bookmark: _GoBack]3GPP TSG-CT3 Meeting #133	C3-241392
Athens, Greece, 26th February – 1st March 2024

Source:	Huawei
Title:	Discussion on the stage 3 design for the A-ADRF APIs
Document for:	Discussion & Agreement
Agenda Item:	18.37
Work Item / Release:	ADAES / Rel-18
1.	Introduction
During CT3#132-2, there were several discussions on the stage 3 design proposed in the agreed C3-240173/C3-240174/C3-240175 (CR#0224/0225/0226 to TS 29.549) for the A-ADRF exposed APIs defined in stage 2 in clause 9.3 of TS 23.436.
This discussion paper aims hence at clarifying the main concerns raised during these discussions and confirming the validity of this stage 3 design.
2.	Discussion
2.1	Understanding the A-ADRF role and exposed APIs objectives
The A-ADRF is a logical entity within the ADAE internal functional architecture defined in clause 5.3 of TS 23.436 (cf. figure below from this clause). It is mainly used to store the analytics and/or historical collected data that were obtained by the ADAE Server, A-DCCF and/or Data Sources. It is hence playing the role of a data storage, i.e., the only functionalities that should be supported by A-ADRF are:
1)	Enable the service consumer (i.e., ADAE Server, A-DCCF and/or Data Sources) to store the Analytics and/or Collected Data.
2)	Enable the service consumer (i.e., ADAE Server, A-DCCF and/or Data Sources) to retrieve the stored Analytics and/or Collected Data either in a "one-time" manner or via a "subscribe/notify" scheme.


Figure 5.3-1: ADAE internal functional architecture 
Observation#1:	The A-ADRF is providing only storage capabilities within the ADAE layer internal architecture, and can hence be assimilated to the UDR for Application Data in 5GC.
The APIs defined in clause 9.3 of TS 23.436 (cf., table below extracted from clause 9.3.2 of TS 23.436) cover the need in "2)" above and the corresponding stage 2 provisions define a total of 5 separate APIs.
Table 9.3.2-1: List of A-ADRF APIs
	API Name
	API Operations
	Known Consumer(s)
	Communication Type

	SS_AADRF_Data_Collection
	Subscribe
	ADAES

	Subscribe / Notify

	
	Notify
	
	

	SS_AADRF_Historical_ServiceAPI_Logs
	Get
	ADAES

	Request / Response

	SS_AADRF_NetworkSlice_Data
	Get
	ADAES

	Request / Response

	SS_AADRF_Location_Accuracy_Data
	Get
	ADAES
	Request / Response

	SS_AADRF_EdgeData_Collection
	Subscribe
	ADAES

	Subscribe / Notify

	
	Notify
	ADAES
	



2.2	Understanding the adopted stage 3 design of the A-ADRF APIs
As indicated in the table above and further detailed in the clauses under clause 9.3 of TS 23.436, the main objective of all these APIs is to enable the ADAE Server to retrieve various types of data/information (e.g., service API logs, network slice data, location accuracy data, edge data, etc.) from the A-ADRF as also indicated in "2)" above. These APIs do not offer any other functionalities. Defining separate APIs, i.e., one per data type, is hence not justified from stage 3 perspective. These APIs enable to achieve the same goal and the same overall functionality.
These A-ADRF APIs can hence be assimilated to e.g., the 5GC UDR's Application Data Subscription of the Nudr_DataRepository API for Application Data defined in clauses 6.2.13 and 6.2.14 of TS 29.519.
Observation#2:	A single API (i.e., SS_AADRF_DataManagement API) is enough in stage 3 to cover the stage 2 requirements defined for the A-ADRF to support the ADAE layer functionalities, and this was generally fine for all the involved companies in CT3 in the last CT3-132-e meeting.
Then, defining a single API requires that the service consumer is able to request or subscribe to receive one or several types of data stored at the A-ADRF. In order to achieve this goal, each type of data is implemented via a separate event, which enables the service consumer to indicate which event(s) (and hence which type(s) of data) it is interested to subscribe to / retrieve. In Rel-18, there are 4 types of data that need to be supported by the baseline version of the SS_AADRF_DataManagement API, i.e., historical service API logs, network slice data, EDGE related data and location accuracy data.
Observation#3:	Enabling the service consumer to indicate which type(s) of data it is interested in receiving is achieved by defining events.
Observation#4:	The baseline version of the SS_AADRF_DataManagement API shall support 4 events, i.e., historical service API logs, network slice data, EDGE related data and location accuracy data.
Observation#5:	Nothing prevents the service consumer to request to receive either one, two, three or all the four type(s) of data.
2.3	Understanding the main concerns raised on this stage 3 design
The main concern raised (by a single company) on this adopted stage 3 design is that each event (i.e., each type of data) should be tied to an optional feature in order to enable implementations to freely choose to support either one, two, three or all the four type(s) of data.
This concern is not valid as per the following 2 sub-sections. The first sub-section provides a reminder of the objectives and usage scope of the extensibility mechanism based on optional features, and the second sub-section further elaborates on that to explain why using optional feature is not needed at all and not a good design for this specific case.
2.3.1	Reminder of the optional features based extensibility mechanism
The main objective and usage scope for the extensibility mechanism based on optional features mechanism defined for NBI APIs, as defined in clause 6.6.2 of TS 29.500 and enherited from 5GC APIs, is the following:
-	As its name indicates, this mechanism is mainly intended to be used to extend an existing API.
-	In order to to so, "optional fetaures" are defined and a "features negotiation" mechanism is defined to enable the service consumer and the service producer to negotiate and agree on the optional features to be supported.
Observation#6:	The optional features based extensibility mechanism is mainly intended for extending an existing baseline of an API in the following releases.
Observation#7:	Using this mechanism within the baseline (i.e., in the first release) of an API should be needed (i.e., not possible to do otherwise) and justified.
2.3.2	Analysis
Based on the above, there are two aspects that need to be studied and clarified to decide on the validity of this concern:
(1)	Whether the adopted design of the SS_AADRF_DataManagement API prevents a service consumer/producer (i.e., and their implementations/deployment) to only implement a subset of the defined data types?
(2)	What is the added value of introducing the feature negotiation mechanism in this case and whether it justifies using it outside of its main usgae scope?
To address (1) and (2), section 2.2 above clearly explains that the adopted design for this API already enables that:
-	A service consumer can request to receive either one, two, three or all the four type(s) of data.
-	The A-ADRF, based on the requested event(s) (i.e., data type(s)) that the service consumer will provide, will know what to report to the service consumer.
-	If the A-ADRF does not support one of the event(s) (i.e., data type(s)) that the service consumer provides, it will simply ignore it and the representation of the created subscription resource representation returned to the service consumer will contain the list of event(s) retained by the A-ADRF. The A-ADRF will have the very same behaviour in case optional features are used. Therefore, feature negotiation will not bring any added value in that regard.
-	In addition, as the A-ADRF is within the ADAE Layer internal architecture, the supported data types should be easily configured during network configuration phase, e.g., it will be highly rare that an ADAE Server requests to receive a data type that is not supported at the A-ADRF, especially that it is the ADAE Server that mainly store that information there.
-	This is exactly the same situation of the design of the similar Application Data Subscriptions of the Nudr_DataRepository API for Application Data defined in clauses 6.2.13 and 6.2.14 of TS 29.519. Cf., the DataInd data type that can be assimilated to the data type in our case here, and for which the baseline PFD, IPTV, BDT, SVC and ECS data is not tied to any feature.
Observation#8:	Supporting per-data type (i.e., per -event) features will bring any added value and will hence be redundant with the list of requested event(s) (i.e., data type(s)) that the service consumer will provide.
Observation#9:	Supporting per-data type (i.e., per -event) features will not bring any added value + the adopted design is already self-contained and does not need this mechanism to work + this does not justify diverting the feature negotiation mechanism from its main usage scope.
3.	Proposal
Based on the above, the authors of this discussion paper believe that:
-	The adopted design for the A-ADRF exposed APIs in the agreed C3-240173/C3-240174/C3-240175 (CR#0224/0225/0226 to TS 29.549) is correct and appropriate.
-	The related remaining Editor's Note can hence be resolved.
Proposal#1:	Continue with the adopted design for the A-ADRF exposed APIs in the agreed C3-240173/C3-240174/C3-240175 (CR#0224/0225/0226 to TS 29.549) and resolve the related remaining Editor's Note.
Huawai thus proposes to proceed with Proposal#1 above.
3GPP

image2.emf
Data Network / Edge Data Network

ADAE server A-DCCF

Data 

Sources

A-ADRF

Analytics and Collected Data 

ADAE-X

ADCCF-1

ADAE-Y

Consumer 

(VAL Server)

ADAE-S

AADRF-1


Microsoft_Visio___1.vsdx
Data Network / Edge Data Network
ADAE server
A-DCCF
Data Sources
A-ADRF

Analytics and Collected Data
ADAE-X
ADCCF-1
ADAE-Y
Consumer 
(VAL Server)
ADAE-S
AADRF-1



