	
3GPP TSG-CT WG3 Meeting #106	C3-194239
Portoroz, Slovenia; 7th – 11th October 2019

[bookmark: _GoBack]Source:	Deutsche Telekom
Title:	NF Discovery Factors Conveyance
Agenda item:	16.6
Document for:	Discussion/Decision

__

3GPP TSG-CT WG4 Meeting #94	C4-194092
Portoroz, Slovenia; 7th – 11th October 2019

Source:	Deutsche Telekom
Title:	NF Discovery Factors Conveyance
Agenda item:	6.1.4
Document for:	Discussion/Decision

1. Introduction
The NF discovery and NF service discovery enable Core Network entities (NFs or Service Communication Proxy (SCP)) to discover a set of NF instance(s) and NF service instance(s) for a specific NF service or an NF type. NF service discovery is enabled via the NF discovery procedure, as specified in TS 23.502, clauses 4.17.4, 4.17.5, 4.17.9 and 4.17.10.
Indirect Communication with delegated discovery has been introduced by 5G_eSBA work. The SCP may be delegated to perform NF service discovery (see option D Annex E of 3GPP TS 23.501 below).
Model D - Indirect communication with delegated discovery: Consumers do not do any discovery or selection. The consumer adds any necessary discovery and selection parameters required to find a suitable producer to the service request. The SCP uses the request address and the discovery and selection parameters in the request message to route the request to a suitable producer instance. The SCP can perform discovery with an NRF and obtain a discovery result.

When the NF service consumer is configured to use delegated service discovery, it shall include in the HTTP/2 request message the necessary NF service discovery factors to be used by the SCP to perform NF service discovery procedures on behalf of the NF service consumer.
Note that discussion to (1) discovery parameters (those used for discovery by the SCP, analogous to NRF discovery query parameters, not a new functionality, but rather a new way of doing discovery), and discussion to (2) parameters used specifically for selection (new functionality, e.g. bindings, where the SCP may reselect a new producer within the limitations (e.g. a set) set by the binding) are two different issues.
This discussion paper considers only the first point (1), i.e. delegated discovery.
2. Discussion
Using HTTP/2 headers or query parameter in HTTP requests are two different ways to convey the NF service discovery factors. Deutsche Telekom preference is to convey discovery parameters via HTTP/2 headers rather than making use of query parameters. DT would like to bring forward the following arguments as justification of this preference. Most of the arguments for NF service discovery factors via HTTP/2 headers are reflected all along the examples described in Annex A. Comparison is summarized in the table below.
Arg 1: Conveying the NF service discovery factors via HTTP/2 headers avoids unnecessary changes to existing API definitions.
The API definitions define what the API calls do. This includes query parameters to the path.
Delegated discovery is not meant to alter the functionality of the API calls. The addition of nf-disc-factors requires that ALL API definitions are altered to specify support of this additional query parameter (as explained in C4-193735).
To the receiving end, it does not make a difference whether a request came via delegated discovery or not. It is thus strange that because of delegated discovery all API definitions need be changed.
For examples, including sets and operation-agnosticity, please see Annex A.
Arg 2: Non-backwards-compatibility
As per 29.500, 5.2.9: “Unless specified otherwise for an API, a NF Service Producer that receives an HTTP request with one or more unsupported (i.e. not comprehended) query parameters shall: […] for non-safe HTTP methods reject the request with a 400 Bad Request including a ProblemDetails IE […]”. Thus, if using the URI, it should be explicitly specified for each API that delegated discovery is supported. Given that Rel-15 entities may be producers for Rel-16 consumers, backwards-compatibility may be broken.
With the header-based variant, unknown headers can just be ignored.
Arg 3: Different naming convention needed if used as query parameter
Delegated discovery parameters should fulfil the same descriptive role as NRF discovery query parameters. It would then stand to reason that the name of the parameters are kept the same. Since the nf-disc-factors parameters are part of a data structure, they should follow the naming convention of TS 23.501, 5.14. NRF discovery query parameters follow the convention from 5.1.3. This results into two tables with basically the same parameters, but different capitalization that need to be mapped.
Arg 4: Transport efficiency
HTTP/2 headers are designed to be transported efficiently. Parameters and Parameter/Value pairs that are often used can be indexed via existing HTTP/2 mechanisms such as HPACK for very efficient transport. Such mechanisms cannot be used to the same extent if the delegated discovery parameters are part of the URI, as most often, only part of the URI changes. Example: different requests with some equal discovery parameters (e.g. PLMN, slice ID), some NF-specific discovery parameters (e.g. AMF query vs. SMF query) and some request-specific query parameters.
Arg 5: Header manipulation vs. URI manipulation
Typically, HTTP proxies base any routing decision on the host part of a URI and HTTP headers. Routing of HTTP requests based on URI query parameters is not known to the author as a common practice in HTTP.
If query parameters are used, the SCP must implement JSON parsing. Header-based parsing does not require that the SCP implements JSON parsing.
Furthermore, most HTTP proxies already provide extensive tools for header manipulation. Not so the case for complex URI manipulation. Forcing the parameters to be part of the URI thus causes difficulties in using existing solutions where only the minimum logic would be required.
Arg 6: Already agreed to use some headers for delegated discovery routing
The agreed C4-193779 specifies a new custom header, “3gpp-Sbi-Target-apiRoot” to be used for delegated discovery. It would then be consistent to have delegated discovery parameters also as a request header.
Arg 7: Simplicity of implementation
The agreed C4-193812 states as reason “At this moment, SCP has a limited capability to interpret JSON objects when deducing traffic routes”.
The bare minimum required to support delegated discovery by an SCP requires checking and extracting nf-disc-factors query parameter in the URI (it may be placed anywhere within the URI parameters), JSON parsing of the data structure, mapping of each found parameter to the query parameter used by the nnrf-discovery service and then sending it to the NRF.
With the proposed solution, no query parameter mapping or JSON parsing is required by the SCP. A 3gpp-Sbi-Discovery-<query parameter name> header and its associated value can be easily mapped to <query parameter name>=value, which can be directly appended to the nnrf-discovery URI towards the NRF.
Furthermore, it was agreed after extensive discussion in SA2 that the SCP should follow a principle of simplicity.
3. Conclusion
It is proposed to agree on making usage of HTTP/2 headers to convey delegated discovery parameters instead of using query parameters.
If agreed the following CRs are proposed:
- C4-194093: Changes to 29.500. Introduction of the delegated discovery headers and corrects mentions of nf-disc-factors.
- C4-194094: Changes to 29.502 (SMF). Removal of nf-disc-factors as common data type (no new data type is required for header-based delegated discovery).
- C4-194095: Changes to 29.571. Removal of nf-disc-factors as common data type (no new data type is required for header-based delegated discovery)

Annex A
Examples
For the examples below, the message flow in sub clause A.1 is used. The messages were handwritten, so minor errors may be present. Additionally, URI characters such as "{" will be escaped ("{"="%7B", "="%22", etc.). Character escaping is here obviated for better readability.
A.0 Comparison
Summary of points exemplified in the examples below.
	Example
	Category
	Header-based proposal
	Query parameter-based

	A.2
	Rel-15 OpenAPI still valid
	Yes
	No. New query nf-disc-factors query parameter needs to be added

	A.2.1
	HPACK compression of discovery parameters
	Yes
	Only if the whole URI including path and query parameters is the same

	A.2.2
	Two independent tables need be maintained for NRF-based discovery and delegated discovery
	No
	Yes

	A.2.2
	SCP must implement JSON parsing
	No
	Yes

	A.2.3
	Complexity of setting query parameters vs. header in HTTP request
	Same

	A.2.4
	Restricting discovery to a specific set
	Same as in discovery (no difference compared to regular discovery parameters)

	A.3
	Subsequent request to created resource (no binding)
	Same

	A.3.1
	Bindings
	Separate issue to that of delegated discovery

	A.3.2
	Support for ComplexQuery
	Yes

In the author’s opinion, the following examples address some of the concerns raised before the meeting and support the author’s proposal to use headers for delegated discovery.
A.1 Rel-15 message flow
Discovery message from AMF to NRF.
:method:GET
:scheme:http
:path:/nnrf-disc/v1/nf-instances?requester-nf-type=AMF&service-names=nsmf-pdusession&target-nf-type=SMF&target-plmn={"mcc":"405","mnc":"05"}&requester-plmn={"mcc":"405","mnc":"05"}&snssais={"sst":1,"sd":"000001"}&dnn=apn1

Let us assume the FQDN of the selected SMF from the received NfProfiles is smfapsvc.smf1:3000.
AMF then sends a request to the selected SMF to create an SM Context. Request sent to smfapsvc.smf1:3000.
method: POST
:scheme: http
:path: /nsmf-pdusession/v1/sm-contexts
:authority: smfapsvc.smf1:3000
content-type: application/json
{
 <SM Context request body>
}

Response of the SMF:
:status: 201
date: Mon, 16 Sep 2019 13:24:06 GMT
content-type: application/json
location: smfapsvc-xyz.smf1:8080/nsmf-pdusession/v1/sm-contexts/405050000000000-5
{
"upCnxState": "ACTIVATING"
}
Further requests of AMF to operate on this resource will use the URI received from the SMF. i.e. :authority: smfapsvc-xyz.smf1:8080 and :path: /nsmf-pdusession/v1/sm-contexts/405050000000000-5.
Important note: the SMF may return any arbitrary URI on the location: header. {apiRoot} may or may not be the same as in the request (e.g. an implementation may exist where a single microservice is responsible of creating SM contexts and multiple ones of operating on them).
A.2 Initial AMF request: headers vs. nf-disc-factors
Using nf-disc-factors:
method: POST
:scheme: http
:path: /nsmf-pdusession/v1/sm-contexts?nf-disc-factors={requesterNfType="AMF", serviceNames="nsmf-pdusession", targetNfType="SMF", targetPlmn={"mcc":"405","mnc":"05"}, requesterPlmn={"mcc":"405","mnc":"05"},snssais={"sst":1,"sd":"000001"},dnn="apn1"}
:authority: <not in scope of this discussion>
content-type: application/json
{
 <SM Context request body>
}

Using headers:
method: POST
:scheme: http
:path: /nsmf-pdusession/v1/sm-contexts
:authority: <not in scope of this discussion>
3gpp-Sbi-Discovery-requester-nf-type: AMF
3gpp-Sbi-Discovery-service-names: nsmf-pdusession
3gpp-Sbi-Discovery-target-nf-type: SMF
3gpp-Sbi-Discovery-target-plmn: {"mcc":"405","mnc":"05"}
3gpp-Sbi-Discovery-requester-plmn: {"mcc":"405","mnc":"05"}
3gpp-Sbi-Discovery-snssais: {"sst":1,"sd":"000001"}
3gpp-Sbi-Discovery-dnn: apn1
content-type: application/json
{
 <SM Context request body>
}

A Rel-15 OpenAPI definition would still be valid for the request using headers. As per 3GPP TS 29.500, subclause 5.2.9, unless specifically stated for each Stage 3 specification for each NF in Rel-15, the request is not valid as the query parameter is unknown. Since there is no way the SCP can reliably know if the recipient is Rel-15 or not, one could argument that the SCP should always remove the nf-disc-factors query parameter.
The author’s counter-argument is that if it must be removed so that backwards-compatibility can be maintained, it may be better to find an alternative in which it is not there from the beginning.
A.2.1 Efficient transmission of common delegated discovery parameters.
The SCP may locally query parameters in the same way a consumer makes use of the validityPeriod parameter of NfProfiles returned by the NRF. If the same AMF would send a request to an UDM, the discovery request URI could look like this:
/nnrf-disc/v1/nf-instances?requester-nf-type=AMF&service-names=Nudm_UEContextManagement &target-nf-type=UDM&target-plmn={"mcc":"405","mnc":"05"}&requester-plmn={"mcc":"405","mnc":"05"}&supi=405050000000000
And a subsequent UDM request like this if we use delegated discovery (:authority not shown for brevety).
Using nf-disc-factors:
method: GET
:scheme: http
:path: /nudm-sdm/v1/imsi-405050000000000/sm-data?sNssai={"sst":1}&dnn=apn1&plmn-id={"mcc":"405","mnc":"05"}&nf-disc-factors={requesterNfType:"AMF", serviceNames="Nudm_UEContextManagement", targetNfType:"UDM", targetPlmn:{"mcc":"405","mnc":"05"}, requesterPlmn:{"mcc":"405","mnc":"05"}, supi: "405050000000000"}

Using headers:
method: GET
:scheme: http
:path: /nudm-sdm/v1/imsi-405050000000000/sm-data?sNssai={"sst":1}&dnn=apn1&plmn-id={"mcc":"405","mnc":"05"}
3gpp-Sbi-Discovery-requester-nf-type: AMF
3gpp-Sbi-Discovery-service-names: Nudm_UEContextManagement
3gpp-Sbi-Discovery-target-nf-type: UDM
3gpp-Sbi-Discovery-target-plmn: {"mcc":"405","mnc":"05"}
3gpp-Sbi-Discovery-requester-plmn: {"mcc":"405","mnc":"05"}
3gpp-Sbi-Discovery-supi: 405050000000000

In case of query-param-based, although many of the individual parameters in nf-disc-factors are the same as in A.2, no reuse/compression is possible via HPACK, as while the value in :path: can be indexed in the HPACK table, the value is not the same. The consumer (in this case AMF) should know what parameter it intends to use frequently, so in this case it could add the following entries to the HPACK table (note: x, y, z are actually table indices):
x = 3gpp-Sbi-Discovery-requester-nf-type: AMF
y = 3gpp-Sbi-Discovery-target-plmn: {"mcc":"405","mnc":"05"}
z = 3gpp-Sbi-Discovery-requester-plmn: {"mcc":"405","mnc":"05"}

The request could thus be so compressed if using headers:
method: GET
:scheme: http
:path: /nudm-sdm/v1/imsi-405050000000000/sm-data?sNssai={"sst":1}&dnn=apn1&plmn-id={"mcc":"405","mnc":"05"}
x
3gpp-Sbi-Discovery-service-names: Nudm_UEContextManagement
3gpp-Sbi-Discovery-target-nf-type: UDM
y
z
3gpp-Sbi-Discovery-supi: 405050000000000

A.2.2 No JSON parsing required
Since implementation complexity was mentioned, this example will use as reference an HTTP/2 server implementation the authors know. While performance may vary, HTTP libraries are in general quite common, so the assumptions here are assumed valid by the author. An HTTP/2 server using twisted receives an HTTP/2 request.
This example compares the steps required until a NRF discovery request URI can be formed.
The library already allows the receiving end to get a list of the URI query parameters and request headers (both being a key:value list).
For the query-param-implementation, the SCP needs to get the correct argument and parse the JSON object. Thus something like in json.parse(request.args["nf-disc-factors"]), then for each entry map each parameter name to the correct nnrf-disc query parameter (e.g. requesterNfType=requester-nf-type) and append those to the path of the nnrf-disc URI. Since a separate table instead of a rule-based mapping between nf-disc-factors property and nnrf-disc query parameter is defined, a static mapping including the precise content can implement this.
These two tables (nf-disc-factors properties and nnrf-disc query parameters) need be maintained simultaneously so that they do not get out-of-sync.
Additionally, a JSON parser would parse the whole object including sub-parameters like the PLMN. This may be avoided if the JSON object is “stringified” by double-quoting any object inside, i.e.
:path: /nudm-sdm/v1/imsi-405050000000000/sm-data?sNssai={"sst":1}&dnn=apn1&plmn-id="{"mcc":"405","mnc":"05"}"&nf-disc-factors={requesterNfType:"AMF", serviceNames="Nudm_UEContextManagement", targetNfType:"UDM", targetPlmn: "{"mcc":"405","mnc":"05"}", requesterPlmn: "{"mcc":"405","mnc":"05"}", supi: "405050000000000"}
For the header-based implementation, request.getAllHeaders()retrieves all of the headers. Afterwards filter the obtained header collection with only the ones beginning with 3gpp-Sbi-Discovery-. Finally substitute for the remaining headers 3gpp-Sbi-Discovery- with '' (empty string). That is the query paremeter list for nnrf-disc. No JSON parsing required.
A.2.3 Complexity of setting headers vs. setting URI query parameters
One comment was received mentioning that headers may require vendors to do changes into the HTTP protocol stack. When constructing an HTTP request, software stacks do typically provide utility methods to set parameters from a request. Typically, the URI can be constructed outside of the framework and the headers passed as additional parameters (example). This is likely to already exist, as custom headers and query parameters are already used. The implementation complexity appears equivalent to the author.
A.2.4 Restricting discovery to a specific set
In the same way a set ID can be used to make a discovery request, it can be used in delegated discovery requests.
A.3 Subsequent requests to a created resource
Assuming the SMF returned the following response to the AMF (see A.1)
:status: 201
date: Mon, 16 Sep 2019 13:24:06 GMT
content-type: application/json
location: smfapsvc-xyz.smf1:8080/nsmf-pdusession/v1/sm-contexts/405050000000000-5
{
"upCnxState": "ACTIVATING"
}

Let us assume that the AMF, in order to modify the created resource, needs to send the following request:
method: POST
:scheme: http
:path: /nsmf-pdusession/v1/sm-contexts/405050000000000-5/modify
:authority: smfapsvc-xyz.smf1:8080
content-type: application/json
{
 <SM Context Modify request body>
}

That is the location the SMF sent back to the AMF. In Rel’15 (no delegated discovery), the AMF does not need to query to NRF in order to access this resource. Neither does it need to if using delegated discovery. There is no difference whether header-based or query-parameter-based is used, as no discovery is involved (delegated or direct).
This request is compatible with Rel’15, and in the author’s understanding, it should behave the same in Rel-16. Bindings need be explicitly specified by the producer (see next examples).
A.3.1 Binding for subsequent operations
Only the producer-defined binding is covered by this example.
A producer may return a resource with a binding indication (still under discussion, so only informally indicated in the example below). If present, this binding may tell the consumer that reselection may be possible within e.g. a set.
:status: 201
date: Mon, 16 Sep 2019 13:24:06 GMT
content-type: application/json
location: smfapsvc-xyz.smf1:8080/nsmf-pdusession/v1/sm-contexts/405050000000000-5
<binding to set X>
{
"upCnxState": "ACTIVATING"
}

Such a subsequent operation could look like shown below:
method: POST
:scheme: http
:path: /nsmf-pdusession/v1/sm-contexts/405050000000000-5/modify
:authority: smfapsvc-xyz.smf1:8080
content-type: application/json
<binding to set X>
{
 <SM Context Modify request body>
}

In the author’s opinion, such meta-information only indicates to the SCP that the :authority: can be replaced by that of any other member of the set. It is not in the scope of this discussion paper to address how such parameter should look like, though.
A.3. 2 Support for ComplexQuery
As per TS 29.510, Table 6.2.3.2.3.1-1, the complex-query query parameter is used to override the default logical relationship of query parameters.
As per TS 29.571, subclause 5.2.4.10, it may contain a cnfUnits or dnfUnits parameter so that all the members in the array shall be interpreted as logically concatenated with logical "AND" or alternatively all the members in the array shall be interpreted as logically concatenated with logical "OR".
It should be noted that each of the Atom elements in complex-query is not validated. The value of Atom is specified as type: string. Table 5.2.4.15-1 defines the Atom attribute string as this attribute contains the name of a defined query parameter.
Assumeing the example NRF query from A.1 using complex-query instead of query parameters.
:method:GET
:scheme:http
:path:/nnrf-disc/v1/nf-instances?complex-query={ "cnfUnits": [cnfUnit:[{"attr":" requester-nf-type", "value":"AMF"}], cnfUnit:[{"attr":"service-names", "value":" nsmf-pdusession"}], cnfUnit:[{"attr":" target-nf-type", "value":"SMF"}], cnfUnit:[{"attr":" target-plmn", "value":={"mcc":"405","mnc":"05"}}], cnfUnit:[{"attr":"requester-plmn", "value":{"mcc":"405","mnc":"05"}}], cnfUnit:[{"attr":"snssais", "value":{"sst":1,"sd":"000001"}}], cnfUnit:[{"attr":"dnn", "value":"apn1"}]] }

Assumed request to SMF from A.1 (no delegated discovery)
method: POST
:scheme: http
:path: /nsmf-pdusession/v1/sm-contexts
:authority: smfapsvc.smf1:3000
content-type: application/json
{
 <SM Context request body>
}
Using nf-disc-factors:
method: POST
:scheme: http
:path: /nsmf-pdusession/v1/sm-contexts?nf-disc-factors={ complexQuery: { "cnfUnits": [cnfUnit:[{"attr":" requester-nf-type", "value":"AMF"}], cnfUnit:[{"attr":"service-names", "value":" nsmf-pdusession"}], cnfUnit:[{"attr":" target-nf-type", "value":"SMF"}], cnfUnit:[{"attr":" target-plmn", "value":={"mcc":"405","mnc":"05"}}], cnfUnit:[{"attr":"requester-plmn", "value":{"mcc":"405","mnc":"05"}}], cnfUnit:[{"attr":"snssais", "value":{"sst":1,"sd":"000001"}}], cnfUnit:[{"attr":"dnn", "value":"apn1"}]] } }
:authority: <not in scope of this discussion>
content-type: application/json
{
 <SM Context request body>
}

Using headers:
method: POST
:scheme: http
:path: /nsmf-pdusession/v1/sm-contexts
:authority: <not in scope of this discussion>
3gpp-Sbi-Discovery-complex-query: { "cnfUnits": [cnfUnit:[{"attr":" requester-nf-type", "value":"AMF"}], cnfUnit:[{"attr":"service-names", "value":" nsmf-pdusession"}], cnfUnit:[{"attr":" target-nf-type", "value":"SMF"}], cnfUnit:[{"attr":" target-plmn", "value":={"mcc":"405","mnc":"05"}}], cnfUnit:[{"attr":"requester-plmn", "value":{"mcc":"405","mnc":"05"}}], cnfUnit:[{"attr":"snssais", "value":{"sst":1,"sd":"000001"}}], cnfUnit:[{"attr":"dnn", "value":"apn1"}]] }
content-type: application/json
{
 <SM Context request body>
}

In both cases: 3gpp-Sbi-Discovery-complex-query:<payload> (header) or nf-disc-factors={ …, complexQuery:<payload>, … } (query parameter), the same <payload> string can be extracted as-is by the SCP and used to construct the complex-query parameter towards the NRF.
image1.emf
P

r

o

d

u

c

e

r

C

o

n

s

u

m

e

r

Service Request

Service Response

Subsequent Request

P

r

o

d

u

c

e

r

C

o

n

s

u

m

e

r

Service Response

Subsequent Request

NRF

Discovery

NF profile(s)

P

r

o

d

u

c

e

r

C

o

n

s

u

m

e

r

Service Request

Response

Subsequent Request

Discovery

NF profile(s)

NRF

SCP

P

r

o

d

u

c

e

r

C

o

n

s

u

m

e

r

Service Request

+ parameters

Response

NRF

SCP

A

C

B

D

Service Request Service Request

Subsequent Request

Service Request

Microsoft_Visio-Zeichnung1.vsdx
Producer
Consumer

Service Request
Service Response

Subsequent Request
Producer
Consumer

Service Response

Subsequent Request
NRF

Discovery
NF profile(s)
Producer
Consumer

Service Request
Response

Subsequent Request

Discovery
NF profile(s)
NRF
SCP

Producer
Consumer

Service Request
+ parameters
Response

NRF
SCP

A
C
B
D
Service Request
Service Request
Subsequent Request
Service Request

