

	
3GPP TSG-CT WG4 Meeting #89	C4-190302
[bookmark: _GoBack]3GPP TSG-CT WG3 Meeting #101	C3-190236
Montreal, Canada; 25th Feb - 1st March
	CR-Form-v11.4

	CHANGE REQUEST

	

	
	29.501
	CR
	0047
	rev
	-
	Current version:
	15.2.0
	

	

	For HELP on using this form: comprehensive instructions can be found at
http://www.3gpp.org/Change-Requests.

	

	Proposed change affects:
	UICC apps
	
	ME
	
	Radio Access Network
	
	Core Network
	X

	

	Title:	
	Resolution of Editor´s Notes in Annex C

	
	

	Source to WG:
	Nokia, Nokia Shanghai-Bell

	Source to TSG:
	CT4

	
	

	Work item code:
	5GS_Ph1-CT
	
	Date:
	 28-01-2019

	
	
	
	
	

	Category:
	F
	
	Release:
	Rel-15

	
	Use one of the following categories:
F (correction)
A (mirror corresponding to a change in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)
Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	[bookmark: OLE_LINK1]Use one of the following releases:
Rel-8	(Release 8)
Rel-9	(Release 9)
Rel-10	(Release 10)
Rel-11	(Release 11)
Rel-12	(Release 12)
Rel-13	(Release 13)
Rel-14	(Release 14)
Rel-15	(Release 15)
Rel-16	(Release 16)

	
	

	Reason for change:
	The description of the document, collection and store archetypes contains the following:
Editor's note:	The exact operations, methods and definition of the document archetype are FFS.
However, experience with the work on APIs in the present release has shown that the descriptions is already sufficient.
There is also a hanging paragraph at the beginning of Annex C.

	
	

	Summary of change:
	The Editor´s Notes are deleted.
A "General" heading is inserted before the hanging paragraph.

	
	

	Consequences if not approved:
	Unresolved Editor´s Notes remain.

	
	

	Clauses affected:
	C, new C.0, C.1, C.2, C.3

	
	

	
	Y
	N
	
	

	Other specs
	
	X
	 Other core specifications	
	TS/TR ... CR ...

	affected:
	
	X
	 Test specifications
	TS/TR ... CR ...

	(show related CRs)
	
	X
	 O&M Specifications
	TS/TR ... CR ...

	
	

	Other comments:
	

Page 1

[bookmark: _Toc532984853][bookmark: _Toc532984854]Annex C (Informative):
Resource modelling
C.0	General
When designing an API, one shall first think of defining the set of resources consumed. Resources represent objects that are modified by standard HTTP methods and that can be modelled with one of 4 archetypes detailed below. Resource archetypes help API designers to structure the resources. In this process the designer should refer to the appropriate archetype when the resource definition perfectly matches the archetype one. Referring to an archetype immediately defines what operations and HTTP methods are supported by the resource.
The archetypes provided hereafter don't preclude the existence of resources of different types.
C.1	Document
The document archetype is the conceptual base archetype of the other ones. Any resource that is not identified with one of the other resource archetypes is a document.
A document may have child resources that represent its specific subordinate concepts.
The archetype does not place any restriction on HTTP methods when acting on a document.
Only CRUD operations are performed directly on a document resource, i.e. by sending an HTTP request to the URI of that resource. Custom methods are not performed directly on the resource, but by sending an HTTP request to a URI that is associated by a convention (see clause X.4) with the URI of the resource.
Editor's note:	The exact operations, methods and definition of the document archetype are FFS.
[bookmark: _Toc532984855]C.2	Collection
The collection archetype can be used to model a resource that serves as a directory of resources. A collection is NF Service Provider-managed so the NF Service Provider decides the URIs of each resource that is created in the collection.
NOTE:	Even though a collection resource typically contains child resources, it is allowed that a particular collection resource does not contain any child resource at a particular point in time ("empty collection").
The Create and Read operations are performed on a collection directly.
More specifically:
-	A collection child resource is created by sending a POST with the collection URI if accepted by the collection;
-	A collection is read by sending a GET with the collection URI;
-	The PUT and PATCH methods with the collection URI are not allowed;
-	The DELETE method with the collection URI is only allowed if the collection resource has been created dynamically based on a request from the NF Service Consumer.
-	The authorized operations on a collection child resource depend on that resource's archetype.
Editor's note:	The exact operations, methods and definition of the collection archetype are FFS.
[bookmark: _Toc532984856]C.3	Store
The store archetype can also be used to model a resource that serves as a directory of resources but a store is NF Service Consumer-managed. The NF Service Consumer solely decides what resource shall be added to / deleted from a store. The NF Service Consumer decides what the URI of the added resource is.
NOTE:	Even though a store resource typically contains child resources, it is allowed that a particular store resource does not contain any child resource at a particular point in time ("empty store").
The Read operation is performed on a store directly, and the Create operation is performed on store child resources.
More specifically:
-	A store child resource is created by sending a PUT with the URI of the child resource to be created.
-	A store is read by sending a GET with the store URI;
-	The POST, PUT and PATCH methods with the store URI are not allowed;
-	The DELETE method with the store URI is only allowed if the store resource has been created dynamically based on a request from the NF Service Consumer.
-	Apart from Create (PUT), the authorized operations on a store child resource depend on that resource's archetype.
Editor's note:	The exact operations, methods and definition of the store archetype are FFS.
[bookmark: _Toc532984857]C.4	Custom operation
The custom operation archetype can be used to model an unsafe and non-idempotent operation that is not a Create on a collection.
A custom operation does not operate directly on the resource that would be identified by the custom operation URI. Instead, when the custom operation is associated with a resource, the operation is performed on this associated resource. For instance, a custom operation may modify the associated resource in a special way. This associated resource is identified by stripping the suffix string "/{custOpName}" from the custom operation URI template in clause 4.4.2.
When the custom operation is not associated with any resource but with the service, it acts as an executable function with input parameters and returns the result of the executed function in the response body, not modifying any resource.
POST is the only method allowed with a custom operation URI.
The semantic of the custom operation is encoded in the last segment of the URI template in chapter 4.4.2: /{custOpName}.
