3GPP TSG CT WG1 Meeting #51
C1-080325
Puerto Vallarta, Mexico 28th January – 1st February 2008.
Source:
Vodafone
Title:
Protocol Impact of IMS Debugging/Trace
Agenda item:
9.17
Document for:
DISCUSSION/APPROVAL
Introduction

The stage 2 specification for Service Level Trace, 32.422 illustrates trace session activation for a non-registered UE in Figure 4.1.2.9.2.1, "Trace Session activation for non-registered user " shown below.

[image: image1.wmf]UE

I-CSCF

HSS

EM

P-CSCF

S-CSCF

4. REGISTER

5. REGISTER

6. Cx-Query/

Cx-Select-Pull

7. Cx-Query/

Cx-Select-Pull Resp.

8. REGISTER

9. Cx-Put/ Cx-Pull

10. Cx-Put/

Cx-Pull Resp.

18. 200 OK

(incl. Trace Session activation)

20. 200 OK

(incl. Trace Session activation)

22. 200 OK

3.Storing Trace Control &

Configuration parameters

12. Storing Trace Control &

Configuration parameters

19. Storing Trace Control &

Configuration parameters

21. Storing Trace Control &

Configuration parameters

AS

11. Service Control

(incl. Trace session activation)

2. Update of user’s

profile information

1. Trace Session Activation

17. Storing Trace

Control & Configuration

parameters

13. Third Party REGISTER

14. 200 OK

15. Sh-Pull

16. Sh-Pull Resp.

(incl. Trace Session Activation)

This figure shows trace control and configuration parameters transported by a SIP REGISTER request. A REGISTER request is allowed to contain a body, and other proposals have been made to use REGISTER to carry a body, e.g. draft-lennox-sip-reg-payload. Starting of trace is later triggered by a "Start Trigger Event" in an INVITE request.

This approach has the following drawbacks:
· Because the REGISTER request contains the trace control and configuration, it is not possible to trace the REGISTER message itself.
· Every IMS entity has to check all REGISTER requests for a body, and potentially act upon the contents

· Error procedures for failed registrations with bodies must be defined

· The SIP protocol is an end-to-end client-server protocol, not usually a protocol for transporting information to a number of entities in a signalling path
· Not every network entity that has to trace signalling receives the REGISTER request (e.g. MGCF)

Because of the drawbacks of using the REGISTER method, this discussion paper proposes an alternative approach based on an event package, similar to the registration event package defined in RFC 3680.
Proposed Signalling for Debugging

It is possible to provide propagation of trace control and configuration information from the S-CSCF by requiring that all IMS entities that need trace data subscribe to a trace configuration event package hosted by the S-CSCF. The S-CSCF generates a debug configuration document to the debug event package subscribers. A new "debug" option tag, to be included in an initial request, is also proposed to provide the "Start Trigger Event". This approach is illustrated by the signalling example in Figure 1 below.

[image: image2]
Figure 1 Example configuration of debugging using subscription to an event package
F1 REGISTER Alice -> Registrar

REGISTER sip:r1.atlanta.com SIP/2.0

 Via: SIP/2.0/UDP u1.atlanta.com:5060;branch=z9hG4bKnashds7

 Max-Forwards: 70

 To: Alice <sip:alice@atlanta.com>

 From: Alice <sip:alice@atlanta.com>;tag=456248

 Call-ID: 843817637684230@998sdasdh09

 CSeq: 1826 REGISTER

 Contact: <sip:alice@192.0.2.4>

 Expires: 7200

 Content-Length: 0

F2 200 OK Registrar -> Alice

 SIP/2.0 200 OK

 Via: SIP/2.0/UDP u1.atlanta.com:5060;branch=z9hG4bKnashds7

 ;received=192.0.2.4

 To: Alice <sip:alice@atlanta.com>;tag=2493k59kd

 From: Alice <sip:alice@atlanta.com>;tag=456248

 Call-ID: 843817637684230@998sdasdh09

 CSeq: 1826 REGISTER

 Contact: <sip:alice@192.0.2.4>

 Expires: 7200

 Content-Length: 0

F3 SUBSCRIBE Alice -> Registrar

SUBSCRIBE sip:alice@atlanta.com SIP/2.0

 Via: SIP/2.0/UDP u1.atlanta.com;branch=z9hG4bKnashds7

 From: sip:alice@atlanta.com;tag=123aa9

 To: sip:s1.atlanta.com

 Call-ID: 9987@u1.atlanta.com

 CSeq: 9887 SUBSCRIBE

 Contact: sip:u1.atlanta.com

 Event: debug

 Max-Forwards: 70

 Accept: application/debuginfo+xml

 The registrar (which is acting as the notifier for the debug event package) generates a 200 OK to the SUBSCRIBE:

F4 200 OK Registrar -> Alice

 SIP/2.0 200 OK

 Via: SIP/2.0/UDP s1.atlanta.com;branch=z9hG4bKnashds7

 ;received=192.0.2.1

 From: sip:alice@atlanta.com;tag=123aa9

 To: sip:s1.atlanta.com;tag=xyzygg

 Call-ID: 9987@ u1.atlanta.com

 CSeq: 9987 SUBSCRIBE

 Contact: sip:s1.atlanta.com

 Expires: 3600

The registrar then generates a notification with the debugging configuration for Alice. The debugging configuration contains a call-id element that Alice's user agent shall use for a session or standalone transaction that is to be debugged.
F5 NOTIFY Registrar -> Alice

 NOTIFY sip:u1.atlanta.com SIP/2.0

 Via: SIP/2.0/UDP r1.atlanta.com;branch=z9hG4bKnasaii

 From: sip:r1.atlanta.com;tag=xyzygg

 To: sip:alice@atlanta.com;tag=123aa9

 Call-ID: 9987@s1.atlanta.com

 CSeq: 1288 NOTIFY

 Contact: sip:r1.atlanta.com

 Event: debug

 Max-Forwards: 70

 Content-Type: application/debuginfo+xml

 Content-Length: ...

 <?xml version="1.0"?>

 <debuginfo xmlns="urn:ietf:params:xml:ns:debuginfo"

 version="0" state="full">

 <debugconfig>

 <session call-id="9901@nms1.atlanta.com" trace-depth="minimum" activation="enabled">

 <method>INVITE</method>

 <trace-depth>minimum</trace-depth>

 <stop-event>final-response</stop-event>

 </session>

 </debugconfig>

 </debuginfo>

NOTE: If multiple sessions are to be debugged, then multiple <session></session> elements are included in the XML, each one with a different call-id attribute.

F6 200 OK Alice -> Registrar

 SIP/2.0 200 OK

 Via: SIP/2.0/UDP r1.atlanta.com;branch=z9hG4bKnashds7

 ;received=192.0.2.1

 From: sip:r1.atlanta.com;tag=xyzygg

 To: sip:alice@atlanta.com;tag=123aa9

 Call-ID: 9987@s1.atlanta.com

 CSeq: 1288 NOTIFY

 Contact: sip:u1.atlanta.com

The user agent then sends an INVITE request that is tagged for debugging by adding a debug option tag to the Call-ID header field.

F7 INVITE Alice -> Bob

 INVITE sip:bob@biloxi.com SIP/2.0

 Via: SIP/2.0/UDP u1.atlanta.com;branch=z9hG4bKnashds8

 From: sip:alice@atlanta.com;tag=123aa10

 To: sip:bob@biloxi.com

 P-Preferred-Identity: alice@atlanta.com

 Call-ID: 9901@nms1.atlanta.com, debug

 CSeq: 82779 INVITE

 Max-Forwards: 70

 Content-Type: application/sdp

 Content-Length: ...

F8 INVITE Alice -> Bob

 INVITE sip:bob@biloxi.com SIP/2.0

 Via: SIP/2.0/UDP p1.atlanta.com;branch=z9hG4bKnashds8

 Via: SIP/2.0/UDP u1.atlanta.com;branch=z9hG4bKnashds8

 From: sip:alice@atlanta.com;tag=123aa10

 To: sip:bob@biloxi.com

 P-Asserted-Identity: alice@atlanta.com

 Call-ID: 9901@nms1.atlanta.com, debug

 CSeq: 82779 INVITE

 Max-Forwards: 69

 Content-Type: application/sdp

 Content-Length: ...

F9 SUBSCRIBE p1 -> Debug Event Package

If proxy p1.atlanta.com is not already subscribed to the debug event package for sip:alice@atlanta.com, then the debug option tag in the Call-ID header field of the INVITE request causes proxy p1.atlanta.com to subscribe to the debug configuration for Alice.

 SUBSCRIBE sip:alice@atlanta.com SIP/2.0

 Via: SIP/2.0/UDP p1.atlanta.com;branch=z9hG4bKnashds7

 From: sip:p1.atlanta.com;tag=123aa9

 To: sip:alice@atlanta.com

 Call-ID: 9987@p1.atlanta.com

 CSeq: 9887 SUBSCRIBE

 Contact: sip: p1.atlanta.com

 Event: debug

 Max-Forwards: 70

 Accept: application/debuginfo+xml

 The registrar (which is acting as the notifier for the debugging event package) generates a 200 OK to the SUBSCRIBE:

 SIP/2.0 200 OK

 Via: SIP/2.0/UDP p1.atlanta.com;branch=z9hG4bKnashds7

 ;received=192.0.2.1

 From: sip:p1.atlanta.com;tag=123aa9

 To: sip:alice@atlanta.com;tag=xyzygg

 Call-ID: 9987@p1.example.com

 CSeq: 9987 SUBSCRIBE

 Contact: sip:r1.atlanta.com

 Expires: 3600

 The registrar then generates a notification with the current state. An active debug session exists:

 NOTIFY sip:p1.atlanta.com SIP/2.0

 Via: SIP/2.0/UDP r1.atlanta.com;branch=z9hG4bKnasaii

 From: sip:p1.atlanta.com;tag=123aa9

 To: sip:alice@atlanta.com;tag=xyzygg

 Call-ID: 9987@p1.example.com

 CSeq: 1288 NOTIFY

 Contact: sip:r1.atlanta.com

 Event: debug

 Max-Forwards: 70

 Content-Type: application/debuginfo+xml

 Content-Length: ...

<?xml version="1.0"?>

 <debuginfo xmlns="urn:ietf:params:xml:ns:debuginfo"

 version="0" state="full">

 <debugconfig>

 <session call-id="9901@nms1.atlanta.com" trace-depth="minimum" activation="enabled">

 <method>INVITE</method>

 <trace-depth>minimum</trace-depth>

 <stop-event>final-response</stop-event>

 </session>

 </debugconfig>

 </debuginfo>

The debug option tag appended to the Call-ID header field causes entities to retrieve debugging configuration for this user. The Call-ID in the debugging configuration matches the Call-ID of the INVITE request from the user agent, therefore the proxy begins to log signalling. Logging will stop when a final response is received for the INVITE request.
This approach has the following advantages:

· It is possible to provide trace control and configuration for entities that do not receive the SIP REGISTER request, e.g. MGCF and BGCF
· Control of trace is decoupled from registration. Trace does not depend on successful registration, nor does it require that all entities that perform tracing to receive the REGISTER request. For example, it could be problematic to ensure that the MGCF receives trace control data because it is not in the signalling path for registration, likewise for a BGCF that is downstream of the S-CSCF.

· Trace configuration can be changed at any time, not only when a REGISTER message is sent.
· Trace starting and stopping is still controlled by signalling, namely by a start event, the debug option tag, and stop event, defined in the debugging configuration. Entities may subscribe to the debug event package when they receive the debug option tag, therefore it is not necessary for all IMS entities to be subscribed to the debug configuration event package for all users all the time.
· Only one source of trace configuration exists, the debug event package at the S-CSCF. This approach avoids the need for separate O&M control of trace configuration at the UE and simplifies synchronization of trace activation.
Unregistered Users
For unregistered users, debugging configuration may be provided directly to the UE and to network entities by a network management server. This is an alternative or additional mechanism to an event package and allows an initial REGISTER request to be debugged. In order to allow direct debugging configuration by the network management server, the UE requires a managed object for debugging configuration.

Conclusions

To provide debugging of SIP signalling, the following are proposed:
· Define an event package for debugging configuration

· Define a new "debug" option tag to be used as a start trigger event for debugging
· Define new managed object data for debugging configuration

SUBSCRIBE Event: Debug F19

INVITE debug F18

200 OK F17

NOTIFY F16

INVITE debug F10

200 OK F15

SUBSCRIBE Event: Debug F14

200 OK F11

200 OK F9

NOTIFY F10

SUBSCRIBE Event: Debug F9

INVITE debug F8

200 OK F6

200 OK F4

SUBSCRIBE Event: Debug F3

Media Gateway

mgw1.atlanta.com

Application

a1.atlanta.com

Registrar

r1.atlanta.com

Proxy

p1.atlanta.com

User Alice

u1.atlanta.com

INVITE debug F7

NOTIFY F5

200 OK F2

REGISTER F1

_1207629306.vsd
�

�

UE�

19. Storing Trace Control & Configuration parameters�

P-CSCF�

I-CSCF�

HSS�

21. Storing Trace Control & Configuration parameters�

EM�

�

�

1. Trace Session Activation�

3.Storing Trace Control & Configuration parameters�

5. REGISTER�

�

6. Cx-Query/
Cx-Select-Pull�

7. Cx-Query/
Cx-Select-Pull Resp.�

�

8. REGISTER�

�

14. 200 OK�

�

�

20. 200 OK
(incl. Trace Session activation)�

�

S-CSCF�

4. REGISTER�

9. Cx-Put/ Cx-Pull�

10. Cx-Put/
Cx-Pull Resp.�

15. Sh-Pull�

17. Storing Trace Control & Configuration parameters�

16. Sh-Pull Resp.
(incl. Trace Session Activation) �

18. 200 OK
(incl. Trace Session activation)�

22. 200 OK�

12. Storing Trace Control & Configuration parameters�

AS�

11. Service Control
(incl. Trace session activation)�

2. Update of user�s profile information�

13. Third Party REGISTER�

