3GPP TSG CT WG1 Meeting #50
C1- 072960
Sophia Antipolis, France, 5th – 9th November 2007.
Source:
LM Ericsson
Title:
Discussion on IBCF/TrGW ICE procedures - Full ICE vs ICE lite and TCP
Agenda item:
8.12
Document for:
DISCUSSION
ABSTRACT

This document describes different alternative mechanisms, and issues related, on how an IBCF/TrGW can support ICE when ICE is terminated by the IBCF/TrGW (see Alternative 4 in C1-072365). One alternative is based on the IBCF/TrGW acting as a full ICE entity, and the other alternative is based on the IBCF/TrGW acting as a ICE lite entity.

This document also describes a mechanism how the IBCF/TrGW shall process ICE for TCP based media streams.

ICE lite vs full ICE
During the CT WG1#49 meeting different alternatives for the support of ICE in the IBCF/TrGW were presented (C1-072365). One alternative (“First alternative”) pretty much described what is defined in the current text – the ICE procedures will be terminated. The other alternatives described different ways how ICE support could be implemented in the IBCF/TrGW. It was quite clear that at least one alternative (“Second alternative”) would not work, and issues were also raised regarding the “Third alternative”. Based on the comments given at the meeting, most people would prefer the “Fourth alternative”. This document focuses on the “Fourth alternative”. The document describes two ways of implementing, and issues related to each way, the fourth alternative, based on whether the IBCF/TrGW acts as a full ICE entity or an ICE lite entity.

[image: image1.emf]UE

NAT & 

FW

STUN/

TURN

Server

A2:a2

W2:w2X1:x1Y1:y1

PCEF

PCRF

Mw

A1:a1

W1:w1

S

T

U

N

S

e

r

v

e

r

P-CSCFS-CSCF

Gm

IBCF

TrGW

Mw

Y2:y2Z1:z1


Figure 1

First alternative: IBCF/TrGW acts as full ICE entity
With this alternative the IBCF/TrGW acts as a full ICE entity. I will only provide a single host candidate, and if the remote end provides multiple candidates it will trigger STUN connectivity checks.
The IBCF/TrGW will act as controlling ICE entity towards the side where it sends an offer, and as a controlled ICE entity towards the side from where it receives an offer.

NOTE: Even if the IBCF/TrGW is acting as a full ICE entity, it does not need to send keep-alive messages. Keep-alives will only have to be sent by the UEs behind the NATs, and they will do so no matter if they are acting as controlling or controlled ICE enties.


[image: image2.emf]UEIBCFTgWG

STUN/

TURN

Call Event

Allocate

Req

Allocate Resp.

Y1:y1

INVITE

m/c = Y1:y1

Candidate A2:a2

Candidate Y1:y1

Candidate W2:w2

Allocate

Req

Allocate Resp.

Y2:y2

Z1:z1

INVITE

m/c = Z1:z1

Candidate Z1:z1

18x

m/c = ZZ1:zz1

Candidate ZZ1:zz1

18x

m/c = Y2:y2

Candidate Y2:y2

IBCFTgWG

STUN/

TURN

UE

Allocate

Req

Allocate Resp.

YY2:yy2

ZZ1:zz1

INVITE

m/c = YY2:yy2

Candidate YY2:yy2

Allocate

Req

Allocate Resp.

YY1:yy1

18x

m/c = YY1:yy1

Candidate AA2:aa2

Candidate YY1:yy1

Candidate WW2:ww2

ICE Connectivity ChecksICE Connectivity ChecksICE Connectivity Checks

ICE 

Controller

ICE 

Controller

ICE 

Controller

ICE 

Controlled

ICE 

Controlled

ICE 

Controlled

INVITE

m/c = W2:w2

Candidate A2:a2

Candidate Y1:y1

Candidate W2:w2

Notification

ICE Complete

INVITE – This is optional given no change in 

offered SDP

m/c = Z1:z1

Candidate Z1:z1

INVITE

m/c = YY2:yy2

Candidate YY2:yy2

Notification

ICE Complete

18x

m/c = WW2:ww2

Candidate AA2:aa2

Candidate YY1:yy1

Candidate WW2:ww2

18x

m/c = ZZ1:zz1

Candidate ZZ1:zz1

18x

m/c = Y2:y2

Candidate Y2:y2

MediaMediaMedia


Figure 2

ISSUES when IBCF/TrGW acts as full ICE entity: 

· When sending an SDP offer, the IBCF/TrGW becomes an ICE controller and thus is responsible for sending session updates at the conclusion of STUN connectivity checks, if necessary. There may be cases where no update is necessary between the originating UE and the IBCF, but an update from the IBCF towards the terminating side still may be necessary. Such a case would require the IBCF to initiate a session update request on its own.

· If the session update answer contains updated information, the IBCF may have to generate a session update also towards the other side. Then, the answer from that side may again trigger a session update towards the other side, etc etc etc. In theory this can cause a never-ending session update process, where the answer from one side requires a session update on the other side.

· If the IBCF receives a session update from one side, but has already finished the STUN connectivity check on the other side and has an ongoing session update transaction on that side, it would have to either BUFFER or DISCARD the received session update until the session update on the other side has been completed (see figure 3).
· Since the incoming session update will have to be forwarded once the ongoing session update has been completed, the terminating side will receive multiple re-session updates which may contain the same information.
· If the IBCF receives a session update, but it has still not finished the STUN procedures on the other side (i.e. it has still not sent a session update towards the other side), it can choose to FORWARD the session update (appropriately modified) towards the other side (see figure 4), or it will have to BUFFER or DISCARD the received session update until the STUN procedures on the other side has been competed (see figure 5).
· If the IBCF forwards the received session update, it will still have to trigger a new session update when it has finished the STUN connectivity checks on the other side, which means that the terminating side again will receive multiple session updates which may contain the same information.
· It would not be possible to authenticate the session updates generated by the IBCF, since the IBCF does not have the user credentials etc needed for that. Whether the need to authenticate mid-dialog requests exist is an issue depends on the outcome of ongoing SA3 discussions. 


[image: image3.emf]UPDATE request is 

buffered

IBCF sends UPDATE when 

STUN connectivity checks have 

completed

IBCF/TrGW

UPDATE response

IBCF sends UPDATE, based on the 

received UPDATE that was buffered. The 

UPDATE may be identifcal to the one 

previously sent.

TIME t

UPDATE response

UPDATE response


Figure 3: IBCF receives session update while session update on the other side is ongoing

[image: image4.emf]UPDATE request

IBCF sends UPDATE when 

STUN connectivity checks have 

completed

IBCF/TrGW

UPDATE response

IBCF sends UPDATE 

triggered by received 

UPDATE

UPDATE response

UPDATE response


Figure 4: IBCF receives session update, forwards it, and send new session update when STUN procedures on other side have completed

[image: image5.emf]UPDATE request

IBCF sends UPDATE when 

STUN connectivity checks have 

completed

IBCF/TrGW

UPDATE response

UPDATE response

TIME t


Figure 5: IBCF receives session update, but does not forward it until STUN procedures have completed on other side
Second alternative: IBCF/TrGW acts as ICE lite entity
With this alternative the IBCF/TrGW acts as an ICE lite entity. I will only provide a single host candidate, and it will never trigger STUN connectivity checks.

If the IBCF/TrGW acts as an ICE lite entity, there will never be STUN connectivity checks between two IBCF/TrGWs.

[image: image6.emf]UEIBCFTgWG

STUN/

TURN

Call Event

Allocate

Req

Allocate Resp.

Y1:y1

INVITE

m/c = Y1:y1

Candidate A2:a2

Candidate Y1:y1

Candidate W2:w2

Allocate

Req

Allocate Resp.

Y2:y2

Z1:z1

INVITE

m/c = Z1:z1

Candidate Z1:z1

ICE Lite

18x

m/c = ZZ1:zz1

Candidate ZZ1:zz1

ICE Lite

18x

m/c = Y2:y2

Candidate Y2:y2

ICE Lite

IBCFTgWG

STUN/

TURN

UE

Allocate

Req

Allocate Resp.

YY2:yy2

ZZ1:zz1

INVITE

m/c = YY2:yy2

Candidate YY2:yy2

ICE Lite

Allocate

Req

Allocate Resp.

YY1:yy1

18x

m/c = YY1:yy1

Candidate AA2:aa2

Candidate YY1:yy1

Candidate WW2:ww2

ICE Connectivity ChecksICE Connectivity Checks

ICE 

Controller

ICE 

Controlled

ICE 

Controlled

ICE 

Controller

INVITE

m/c = W2:w2

Candidate A2:a2

Candidate Y1:y1

Candidate W2:w2

18x

m/c = YY2:yy2

Candidate YY2:yy2

INVITE

m/c = WW2:ww2

Candidate AA2:aa2

Candidate YY1:yy1

Candidate WW2:ww2

18x

m/c = Y2:y2

Candidate Y2:y2

MediaMediaMedia


Figure 6

ISSUES when IBCF/TrGW acts as ICE lite entity: 

· In this case the IBCF/TrGW would never be an ICE controller and thus not be responsible for sending session updates. However, it will have to deal with receiving session updates from both sides, since the remote entities on each side act as ICE controllers. 

· If the IBCF receives a session update from one side, modifies and forwards it towards the other side and then receives a session update from the other side while the previous session update transaction is still ongoing, a session update race condition occurs (see figure 7).
· There are procedures on how to deal with session update race conditions, but they will cause additional delay and messages in the network

[image: image7.emf]UPDATE request

IBCF/TrGW

UPDATE request

IBCF sends UPDATE 

triggered by received 

UPDATE

UPDATE rejected

(due to race condition)

Session update 

race condition

UPDATE response

UPDATE response

UPDATE request 

(previously rejected)

IBCF sends UPDATE 

triggered by received 

UPDATE

UPDATE response

UPDATE response


Figure 7: IBCF receives session update, forwards it and receives session update from other side while first session update is still ongoing
ICE for TCP based media streams
IETF defines ICE support for TCP. Currently, the following is defined:

· Entity supporting ICE for TCP must be full ICE entity (even if the entity “knows” that it is not located behind a NAT)
· Entity supporting ICE for TCP must provide more candidates for TCP streams than for UDP streams
We believe that, as currently defined, ICE support for TCP will be very “heavy” for IMS entities, especially for terminals with limited memory-, processor and battery resources. We propose two mechanisms which will make life a little easier using TCP based media streams.

NOTE: The IBCF/TrGW must always use media latching for incoming TCP connections, since the SDP normally does not contain information about from where the remote connection 
First alternative: ICE is disabled for TCP based media streams
This alternative proposes that the IBCF from the SDP removes all candidate attributes from TCP based media streams, so that ICE will not be used on those streams. Instead a mechanism based on RFC 4145 is used to make sure that the TCP media streams will also traverse NATs. 
NOTE: Support of RFC 4145 is currently REQUIRED in TS 24.229, but there is not text on HOW to use it.
NOTE: ICE requires that RFC 4145 is used as a “fallback” in any case
The mechanism is based on the following procedures:

· When the IBCF receives an SDP offer with ICE candidates for TCP streams it removes the candidates

· In the SDP answer the IBCF includes an SDP setup attribute with a “passive” value for the TCP streams, which requests the originating UE to establish the TCP media connection towards the IBCF/TrGW (from a NAT perspective there is no problem for UEs behind NATs to establish outgoing TCP connections)

· The IBCF sends an SDP offer towards the other side without ICE candidates for TCP streams

· The IBCF includes an SDP setup attribute with a “actpass” value for the TCP streams. If the receiving entity is located behind a NAT is shall reply with an “active” value, indicating that it will establish the TCP connection towards the IBCF/TrGW. Otherwise the IBCF/TrGW is to establish the TCP connection (if there is a “passive” value in the SDP answer).
· When the IBCF receives an SDP offer with the “actpass” value (if the SDP offer comes from another IBCF), it will forward that value, and also forward the value which later comes in the SDP answer.
If both UEs are located behind NATs, and the IBCF/TrGW therefore will receive TCP connections from both sides (in case there are multiple IBCF/TrGWs in the path, only the one that removed the ICE candidates) can choose to act as a TCP B2BUA, to prevent TCP SYN messages from one side to be forwarded towards the other sides (the SYN messages can cause problems with certain NAT devices that do not support simultaneous open functionality). If the operator knows that the SYN messages will not cause problem TCP B2BUA functionality is not needed. Also, if the IBCF/TrGW will only receive a TCP connection from one side (towards the other side the IBCF/TrGW will establish a TCP connection itself) TCP B2BUA functionality is not needed – the IBCF/TrGW will simply transparently forward the incoming TCP connection towards the other side.

The main issue with this alternative is that the ICE specification currently says that unless ICE can be used on ALL media streams, ICE will not be used at all. So, that means that by removing the ICE candidates from TCP based media streams in the SDP, ICE will be disabled also on UDP based media streams. However, we haven’t found any technical reasons why ICE could not be performed on specific media streams (when new streams are added during a session the ICE procedures is done on a per-stream basis) even if ICE is not used on other streams. If the group decided to move forward with this alternative, we propose that we indicate this to IETF, and request a change in the specification to allow an ICE-per-stream approach.
When this mechanism is used, the UEs will not initiate connectivity checks for the TCP based streams, since ICE was disabled. Also, the UEs will not have to establish (or, at least reserve resources for) TCP connections for each candidate. Only a single TCP connection is needed per media component in a stream, which is a big advantage for UEs with resource limitations.
Second alternative: Only a passive candidate sent by the IBCF for TCP based streams
This mechanism is rather similar to the one in the first alternative. The main difference is that the IBCF does not cause ICE to be disabled for IMS. Instead, the IBCF includes a “passive” candidate (Note: ONLY a passive candidate) in the offer/answer it sends, requesting the remote entity to establish the TCP connections towards the IBCF/TrGW (from a NAT perspective there is no problem for UEs behind NATs to establish outgoing TCP connections).

Now, since ICE is not terminated, the UEs will establish multiple TCP connections towards the IBCF/TrGW, perform STUN connectivity checks on those connections, and then choose “the best”.

In case two IBCF/TrGWs are communication with each other, one of them obviously will have to establish the TCP connections towards the other. This is solved using the following mechanism:

· If the IBCF receives an SDP offer with only a “passive” candidate, it sends an “active” candidate in the SDP answer and requests the TrGW to establish the TCP connections towards that side.

The first main issue with this alternative is that the ICE-TCP specification currently does not allow to only include a “passive” candidate in the SDP. If the group decided to move forward with this alternative, we propose that we indicate this to IETF, and request a change in the specification to allow an entity to only include a “passive” candidate.
The second issue with this alternative is that the TrGW will always have to be a TCP B2BUA, since it must be able to terminate and process STUN connectivity checks received on the TCP connection. This will have resource impacts on the TrGW.












_1252738634.vsd
UE


NAT & FW


STUN/TURN
Server


IBCF


A2:a2


W2:w2


TrGW


Mw


Y2:y2


X1:x1


Y1:y1


PCEF


PCRF


Z1:z1


Mw


A1:a1


W1:w1


STUN
Server


P-CSCF


S-CSCF


Gm



_1255038779.vsd
UPDATE request


IBCF sends UPDATE when STUN connectivity checks have completed


IBCF/TrGW


UPDATE response


IBCF sends UPDATE triggered by received UPDATE


UPDATE response


UPDATE response



_1255038992.vsd
TIME t


UPDATE request


IBCF sends UPDATE when STUN connectivity checks have completed


IBCF/TrGW


UPDATE response


UPDATE response



_1255083106.vsd
Session update race condition


UPDATE request


IBCF/TrGW


UPDATE request


UPDATE response


IBCF sends UPDATE triggered by received UPDATE


UPDATE response


UPDATE request 
(previously rejected)


IBCF sends UPDATE triggered by received UPDATE


UPDATE rejected
(due to race condition)


UPDATE response


UPDATE response



_1255038400.vsd
UPDATE request is buffered


IBCF sends UPDATE when STUN connectivity checks have completed


IBCF/TrGW


UPDATE response


IBCF sends UPDATE, based on the received UPDATE that was buffered. The UPDATE may be identifcal to the one previously sent.


TIME t


UPDATE response


UPDATE response



_1252738568.vsd
UE


IBCF


IBCF


TgWG


STUN/TURN


Call Event


Allocate
Req


Allocate Resp.
Y1:y1


TgWG


INVITE
m/c = Y1:y1
Candidate A2:a2
Candidate Y1:y1
Candidate W2:w2


Allocate
Req


Allocate Resp.
Y2:y2
Z1:z1


INVITE
m/c = Z1:z1
Candidate Z1:z1


18x
m/c = ZZ1:zz1
Candidate ZZ1:zz1


18x
m/c = Y2:y2
Candidate Y2:y2


ICE Connectivity Checks


STUN/TURN


UE


Allocate
Req


Allocate Resp.
YY2:yy2
ZZ1:zz1


INVITE
m/c = YY2:yy2
Candidate YY2:yy2


Allocate
Req


Allocate Resp.
YY1:yy1


18x
m/c = YY1:yy1
Candidate AA2:aa2
Candidate YY1:yy1
Candidate WW2:ww2


ICE Connectivity Checks


ICE Connectivity Checks


ICE Controller


ICE Controller


ICE Controller


ICE Controlled


ICE Controlled


ICE Controlled


INVITE
m/c = W2:w2
Candidate A2:a2
Candidate Y1:y1
Candidate W2:w2


Notification
ICE Complete


INVITE – This is optional given no change in offered SDP
m/c = Z1:z1
Candidate Z1:z1


INVITE
m/c = YY2:yy2
Candidate YY2:yy2


Notification
ICE Complete


18x
m/c = WW2:ww2
Candidate AA2:aa2
Candidate YY1:yy1
Candidate WW2:ww2


18x
m/c = ZZ1:zz1
Candidate ZZ1:zz1


18x
m/c = Y2:y2
Candidate Y2:y2


Media


Media


Media



_1252738633.vsd
UE


IBCF


TgWG


STUN/TURN


Call Event


Allocate
Req


Allocate Resp.
Y1:y1


INVITE
m/c = Y1:y1
Candidate A2:a2
Candidate Y1:y1
Candidate W2:w2


Allocate
Req


Allocate Resp.
Y2:y2
Z1:z1


INVITE
m/c = Z1:z1
Candidate Z1:z1
ICE Lite


18x
m/c = ZZ1:zz1
Candidate ZZ1:zz1
ICE Lite


18x
m/c = Y2:y2
Candidate Y2:y2
ICE Lite


IBCF


TgWG


STUN/TURN


UE


Allocate
Req


Allocate Resp.
YY2:yy2
ZZ1:zz1


INVITE
m/c = YY2:yy2
Candidate YY2:yy2
ICE Lite


Allocate
Req


Allocate Resp.
YY1:yy1


18x
m/c = YY1:yy1
Candidate AA2:aa2
Candidate YY1:yy1
Candidate WW2:ww2


ICE Connectivity Checks


ICE Connectivity Checks


ICE Controller


ICE Controlled


ICE Controlled


ICE Controller


INVITE
m/c = W2:w2
Candidate A2:a2
Candidate Y1:y1
Candidate W2:w2


18x
m/c = YY2:yy2
Candidate YY2:yy2


INVITE
m/c = WW2:ww2
Candidate AA2:aa2
Candidate YY1:yy1
Candidate WW2:ww2


18x
m/c = Y2:y2
Candidate Y2:y2


Media


Media


Media



