Page 1

3GPP TSG CT WG1 Meeting #46
C1-070753
Warsaw, Poland, 26th – 30th March 2007
	CR-Form-v9.3

	CHANGE REQUEST

	

	(

	24.880
	CR
	
	(

rev
	-
	(

Current version:
	0.3.0
	(

	

	For HELP on using this form look at the pop-up text over the (
 symbols. Comprehensive instructions on how to use this form can be found at http://www.3gpp.org/specs/CR.htm.

	

	Proposed change affects:
(

	UICC apps(

	
	ME
	
	Radio Access Network
	
	Core Network
	X

	

	Title:
(

	Editorial corrections

	
	

	Source to WG:
(

	IAEI

	Source to TSG:
(

	C1

	
	

	Work item code:
(

	
	
	Date: (

	26/03/2007

	
	
	
	
	

	Category:
(

	F
	
	Release: (

	

	
	Use one of the following categories:
F (correction)
A (corresponds to a correction in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	Use one of the following releases:
R97
(Release 1997)
R98
(Release 1998)
R99
(Release 1999)
Rel-4
(Release 4)
Rel-5
(Release 5)
Rel-6
(Release 6)
Rel-7
(Release 7)
Rel-8
(Release 8)

	
	

	Reason for change:
(

	TR 24.880 is being written by CT1. (TR 24.880 is not under change control.)

	
	

	Summary of change:
(

	Editorial corrections: misspelings, mistyped RFC numbers, incorect references

	
	

	Consequences if
(

not approved:
	Wrong RFC numbers and wrong references may cause confusion

	
	

	Clauses affected:
(

	

	
	

	
	Y
	N
	
	

	Other specs
(

	
	X
	 Other core specifications
(

	

	affected:
	
	X
	 Test specifications
	

	
	
	X
	 O&M Specifications
	

	
	

	Other comments:
(

	

4.3
Choice of the transport channel for media server control
4.3.1
Delegation model

The delegation model is motivated by the notion that that the interface between the MRFC and an AS is a high level interface where the MRFC is a network entity to which an AS delegates execution of media behavior.

The interface is high level since the AS sends a script describing what media behavior should be performed, not how it should be performed in terms of low-level media operations. The script describes the media behavior in terms of a flow of functions (play prompt, collect DTMF, add participant to conference, etc) and control logic for managing and adjusting the flow (e.g. adjusting for behavior in case of media operation failures), fetching additional scripts and resources, and reporting intermediate data.

The MRFC contains script engines which executes these scripts. The engine maintains the state of script execution and therefore the state of the media behavior execution. The engine’s execution environment contains components to manage relationships with other components, including the low-level media processors. Consequently, when an AS ‘delegates’ execution of media behavior to a MRFC, it means the MRFC has an execution state which is independent of the AS’s state – the MRFC not the AS manages the execution state of the media behavior. The controller instructs the MRFC which script to run, but the MRFC manages execution of the script itself.
In terms of architecture, this model uses the existing MRFC interfaces, together with one additional interface – the Sr interface. Figure 4.3.1.1 shows an MRFC with this interface.

[image: image1.emf]MRFC

AS

S-CSCF

Sr HTTP

Mp

Mr

SIP

ISC

SIP

H.248

Figure 4.3.1.1 MRFC interfaces: Sr, Mr and Mp
Using the ISC interface, an AS establishes a SIP [2] dialog to an MRFC (via a S-CSCF and Mr interface). The SIP INVITE request URI shall contain sufficient information to allow the MRFC to identify the script to execute; it may also provide additional parameters for the script. For example, using the user part to indicate a script pre-defined on the MRFC:

INVITE sip:myservice@mrf.example.com SIP/2.0
where ‘myservice’ is predefined with a script on the MRFC, or specifying a script URI as a parameter:

INVITE sip:dialog@mrf.example.com;voicexml=http://server.example.com/script.vxml SIP/2.0
where a VoiceXML script is specified as the value of the parameter “voicexml”. IETF Informational RFC 4240 [3] and Working Drafts draft-burke-vxml-01 [4] provide details on this mechanism.

The Sr interface is used by the MRFC to fetch the script and related resources. Once these have been fetched, the script is executed by the MRFC. Depending on the contents of the script, its execution may involve sending data and fetching additional scripts and resources over the Sr interface. The interaction is terminated when a SIP BYE is sent; the AS can send a BYE to terminate script execution at any time, and the MRFC sends a BYE when execution of the script terminates.

The content of the scripts is dependent on the media behavior which the MRFC needs to execute. W3C has already done extensive work on defining scripting for use in the delegation model. VoiceXML [5] provides a scripting language for interactive media functions; VoiceXML [5] is motivated in Section 6.2.1. CCXML [7] provides a scripting language for conferencing, dialog invocation and outbound dialing; CCXML [7] is motivated in Section 6.2.2.

In several scenarios, scripts executed by the MRFC may request to perform actions which may not be allowed on MRFC. Such actions may include, but are not limited to, outgoing call establishment and call transfer (since the MRFC description is not clear whether these are permitted MRFC functions). For such scenarios a mechanism should be defined to deliver the action information from MRFC to AS and then performing the action by AS. Such mechanism may utilize existing interfaces between MRFC and AS (i.e. ISC and Mr) or new ones (Sr or Cr – see below).

RFC 4240 [3] provides fundamental technique for the delegation model, but it alone is insufficient for the range IVR and conferencing functions of the MRFC. RFC4240 is necessary since the delegation model uses the content of the Request-URI in an INVITE to identify and invoke media services. Each of these services imposes different requirements in terms of MRFC script engine complexity. The announcement service requires a simple engine which uses the Sr interface to fetch media resources. Likewise, the conference service requires a simple engine for simple conferencing. The VoiceXML dialog service requires a more complex script engine, but VoiceXML is well understood. Moreover, the description of the VoiceXML service in RFC4240 is incomplete and raises a number of issues. The description of this service in draft-burke [4] (which builds on RFC4240) addresses most of these issues (whether an MRFC can initiate outbound calls is still outstanding). If the deficiencies in RFC4240 can be addressed in conjunction with other specifications, RFC4240 can provide a straightforward approach for identifying and invoking simple announcement and conferencing services as well as complex IVR services.

4.3.1.2 Mid-call XML support

The delegation model could provide mid-call XML support by extending the Sr interface so that it symmetrical.

Mid-call XML is a technique to allow the intelligence of the service to reside on an AS which asynchronously sends commands as XML fragments to the MRFC thereby driving the behavior of IVR and conferencing services.

In the delegation model, these XML fragments could be delivered to MRFC script engines over the Mr interface using SIP INFO. However, an approach using SIP INFO to pass control data would need to address the problems raised in Section 4.3.2.

An alternative approach for the delegation model is that the XML fragments are delivered to MRFC script engines over the Sr interface. This would require that the Sr interface becomes symmetrical: just as the MRFC can initiate HTTP requests to the AS, so the AS would also be able to initiate HTTP requests towards the MRFC.

Script engine would then need to support receiving XML fragments in an HTTP request. In VoiceXML 2.0/2.1, there is no support: while a VoiceXML MRFC can initiate HTTP requests to the AS and receive XML in return, it cannot accept HTTP requests itself. VoiceXML 3.0 is expected to support asynchronous events, potentially with XML payloads. With CCXML, however, there is support for receiving HTTP requests (its Basic HTTP input-output processor is bi-directional), and these requests could contain XML fragments which provide instructions for advanced conference control.

4.3.1.3 Example
The diagram in Figure 4.3.1.3.1 shows a simple delegation case where the MRFC uses a VoiceXML script to prompt the user for digits and return them to the AS.

Note that the SIP signaling between the CSCF and the AS, and between the CSCF and the UE, has been omitted for the sake of clarity.

[image: image2.emf]MRFC

Terminating

UE

AS

13. SIP 200 (OK)

1. SIP INVITE

RTP

2. SIP INVITE

3. SIP 100 (Trying)

4. SIP 100 (Trying)

5. Sr: HTTP

Request

6. Sr: HTTP

Response

MRFC extracts

service

information from

Request-URI

7. SIP 200 (OK)

8. SIP 200 (OK)

9. SIP ACK

10. SIP ACK

MRFC plays

prompts and

collects digits

11. SIP BYE

BYE payload

include collected

digits

12. SIP BYE

14. SIP 200 (OK)

MRFC fetches

VoiceXML script

Figure 4.3.1.3.1: Delegation Model with simple prompt and collect call flow

In step 2, the MRFC extracts the VoiceXML script URI from the SIP INVITE Request-URI. See Section 4.3.1 for examples of Request-URI’s.
In steps 5 and 6, the MRFC fetches the VoiceXML document from the AS using HTTP over the Sr interface. These steps would be repeated if additional resources were required; for example, prompt files. Note that these steps could be eliminated if the VoiceXML document and resources were already cached on the MRFC.

Once the RTP channel is established, the MRFC executes the VoiceXML script playing any prompts and waiting for digits from the user. Once the digits are collected, the MRFC terminates the SIP dialog in step 11 and return the collected digits in the SIP BYE body. Alternatively, the MRFC could have sent the result to the AS using HTTP over the Sr interface.

4.3.1.4
 Properties

As a high-level interface, the delegation model is clearly distinguished from, and complements, the low-level H.248 model on the Mp interface. Application developers can use a high-level model – familiar to web application developers – where they script their media interaction and delegate it to the MRFC, or they can develop using a low-level model – familiar to the API developers - where they use a TCP connection to send detailed instructions to the MRFP and then manage its state themselves. In the delegation model, the media behavior is defined in a script at the application service layer, the control layer (MRFC) which executes the script and manages media flow, and the media layer (MRFP) which actually carries out the media functions specified in the script. In a low-level model, the service and control layers are combined in a hybrid AS/MRFC.

With the delegation model, the AS can choose how much control to delegate to the MRFC. This depends on the content of the script and the behavior the script can execute before it needs to fetch a new script through the Sr interface. The AS can then exercise fine-grained (tight, low-level) or coarse-grained (loose, high-level) control and can modulate this within a session. Approaches which use a dedicated control channel typically require the AS to retain fine-grained control for the whole session.

The delegation model has been extensively tested and deployed as part the web infra-structure model where it has been demonstrated as highly suitable for distributed service architectures. By reusing a well-tried model, 3GPP can focus on definition of MRFC profiles.

The delegation model fits with existing MRF architecture with only the addition of one new interface (which would be required by most alternative approaches if they explicitly recognized the need for an HTTP [8] fetching interface).

The Sr interface uses a well-known HTTP [8] protocol to fetch resources and provide responses/notifications.

The delegation model reduces the burden on the AS/CSCF to track the status, and interact with the MRFC, for the media part of interactive media, call and conferencing applications. This results in reduced network traffic with the MRFC since decisions about media flow are taken within the MRFC itself rather than passed up to the AS/CSCF for decision. For example, a single CCXML [7] script can be used to play announcement dialogs and to manage participants attending a conference, where a protocol approach will require multiple documents for creating the conference, playing dialogs, and adding/removing conference participants. Furthermore, this can reduce the response time for media control management: i.e. since the MRFC manages the flow locally, there is no need to request the AS/CSCF (e.g. via SIP INFO on ISC/Mr or a dedicated control TCP channel) to make a decision and await a response.

Use of VoiceXML [5][6] and CCXML [7] support the core functions of the MRF and allows simple as well as complex interactive behavior defined in scripts. Existing VoiceXML and CCXML applications (e.g. voice mail, prepaid, portals, self-service applications) can be easily and rapidly adopted within a 3GPP IMS context without the need for application recoding.

As W3C languages, VoiceXML and CCXML are developed and supported by an official W3C working group. There is minimum dependency on IETF working drafts submitted by individuals.

The Mr and ISC interface are only used for call-related functions (call establishment, management and tear-down): it is not used to transmit detailed media control messages to the MRFC or to establish dedicated control channels with the AS.

The delegation model facilitates different entities on the application layer to play different roles with respect to the MRFC. For example, a ‘gateway’ AS may initiate the sessions via the Mr interface, while others can receive HTTP requests and notifications via the Sr interface. Protocol-based approaches typically assume that the same AS which initiates the media session also interacts with the MRFC during the session.
4.3.2
Protocol model with dedicated control channel

The protocol model is motivated by the notion that the interface between the MRFC and AS is a high level interface where the AS uses a transport channel to send media control messages to the MRFC. The MRFC executes the messages and sends responses and notifications back through the transport channel.

The protocol model could use either the ISC and Mr interfaces (e.g. messages in SIP INFO) or a new interface (Cr – see below) with a dedicated transport channel to transmit media control messages. The majority of deployed approaches which follow the protocol model use mechanisms that include carrying commands in a SIP INFO method. This has been an appropriate short term solution during the evolution of SIP [2] and has facilitated early deployments but does not provide a roadmap for future success in the standards arenas. The following outlines some of the reasons that using techniques such as SIP INFO are not considered appropriate:

· SIP INFO was created ‘to carry session control information along the SIP signaling path. It merely sends optional application information, generally related to the session’. Examples of SIP INFO method-use included in the draft are carrying mid-call PSTN signaling messages between PSTN gateways and DTMF digits. This mechanism in not suited or ideally appropriate for carrying information such as media control messages. For this reason alone any mechanism that uses SIP INFO will never be accepted as an industry standard within the IETF.

· The default protocol for SIP is the Unicast Datagram Protocol (UDP). Using SIP and UDP for transfer of media server commands is unreliable and also inherits problems with large packet size. Media server control messages should always be sent over reliable, congestion safe protocols.

· When using a mechanism like SIP INFO, it is possible that any number of intermediaries can insert themselves into the signaling path, either as a record routing proxy or ‘Back-to-Back User Agent (B2BUA), This would result in media server control messages being carried in SIP INFO across any number of SIP intermediaries, which is not ideal or efficient in large networks. There is also the overhead of using a full SIP message with all its mandatory headers and transaction timers which can impact performance dramatically.

· The core SIP specification, RFC3261 [2], contains rules when un-reliable transport protocols such as UDP are used. If a packet reaches the Maximum Transmission Unit (MTU), the transport protocol is upgraded to a reliable form such as TCP. This type of operation is not ideal when constantly dealing with large payloads which are present in a media server control messages.

Identifying such problems – many arising from practical deployment experience - indicates that an alternative mechanism is required for MRFC control that not only leverages the benefits of SIP but also dispels the previously identified problem areas.

The alternative, as described in the SIP Control Framework [9] - under discussion within the IETF informal media control group - is to carry media control messages over a dedicated control channel (SIP Control Framework [9], MSCP [10] - note that while MSCP version 1 defined its own control channel, MSCP version 2 uses the Control Framework).

In the Control Framework SIP is used for its intended purpose – as a rendezvous protocol for negotiating a media session using the Session Description Protocol (SDP). Unlike SIP dialogs with UEs where the SDP are used to establish RTP media streams between the MRF and UE, the approach leverages COMEDIA (RFC4145) [11] so that the SDPs described the establishment of a TCP (or SCTP) channel. The COMEDIA [11] approach is well established and used in the Message Session Relay Protocol (MSRP) [12] which initiates IM media sessions (MSN, Yahoo style chat interactions as apposed to ‘one-hit’ SMS style messages), as well as in Media Resource Control Protocol (MRCP) [13] which establishes a TCP channel to transport control messages to/from speech recognition and speech synthesis media processors. Thus, MRFC messages are exchanged over a direct (peer-to-peer) connection, using a reliable protocol, where the protocol has been initiated using SIP. This addresses the previously identified problems that arose when using SIP INFO:

· SIP INFO method is not used as the approach defines its own message primitives that are passed across the dedicated control channel. This eradicates the inappropriate use of the SIP INFO message.

· The approach only uses reliable connection orientated protocols such as TCP (or SCTP) so messages passing across the control channel are sent reliably.

· As the control channel connection is peer-to-peer it doesn’t matter how many intermediaries the SIP signaling traverses. The media control messages will always pass directly. These messages are also extremely light-weight and do not suffer from complicated transaction models.

· As the dedicated control channel is created using a reliable protocol such as TCP, and SIP is not used to pass interactions, this mechanism does not suffer from the MTU upgrading define in RFC 3261 [2].
The Control Framework approach itself does not define the content of messages transported by the dedicated control channel: its development was motivated by the media control scenario, but it is expected that the Control Framework could be used in a wide variety of application scenarios in the future. Instead the framework defines a mechanism that provides strict requirements on how the Control Framework can be used. Techniques similar to the SIP Event Framework (RFC 3265) are used when creating extensions to the Control Framework. The Control Framework introduces the concept of ‘Control Packages’. For example, the client (e.g. AS) specifies through the SIP header ‘Require: escs’ that it requires the server (e.g. MRFC) to support the control framework, and the server then indicates which control packages it supports through the header “Control-Packages: <package1>, <package2>”. Control Package authors are provided a strict set of rules that shall be followed to use the Control Framework.

The use of packages in the control framework is motivated by the fact that media server control is a complex topic area with a wide range of potential functionality encompassing many varying technologies. Within IMS, the functionality of the MRF is a moving target; while interactive media (play prompt, prompt and collect, etc) as well as conferencing are core functionalities, the ever expanding IMS world also makes it highly likely that technologies will advance in the coming years; MRFs with new functionalities as well as MRFs which combine interactive media and/or conferencing with new ones. It is for this reason that any solution for MRFC needs to be modular in nature and highly extensible. This then allows infra-structure providers and application developers to select only the relevant subset of technology required instead of dealing with enormous, monolithic command sets that are quite often redundant. For this reason, the media control functionality shall be organized into packages.

Various IETF working drafts proposals on media server protocol have started to move from the monolithic commands sets towards functionality organized into packages; for example, MSML [14] and MSCP [10]. MSCP [10] (version 2) uses the same packages as those being defined for the Control Framework:

· Basic Interactive Voice Response (IVR) Control Package [16]: This provides lightweight messages for simple IVR interactions. This control package uses parameterized dialog templates for playing announcement, prompt and collects and prompt and record IVR functions without the need to implement a full VoiceXML solution.

· VoiceXML Interactive Voice Response (IVR) Control Package [17]: This package extends the basic IVR control package with support for VoiceXML. Note that this package does not support VoiceXML’s optional call transfer functionality.

· Conference Control Package [18]: This package allows for the creation, manipulation and termination of a conference mix. Users, explicitly represented by SIP dialog parameters, can be introduced, moved and removed from an existing conference mix.

Although still in early stages, these packages are starting to mature and provide a wide range of MRF functionality. It is expected over the coming period that both the Control framework and packages will mature. One of the next steps is a complimentary extension that provides video support to the appropriate control package and to enhance the Conference Package with support for conferencing. It is expected this document will be available in the very near future.

The use of VoiceXML [5][6] for IVR functionality, especially complex IVR functionality, is a shared feature in IETF informational RFCs and working drafts; for example, RFC4240 [3], MSCML [15], MSML [14], MSCP [10] and the VoiceXML control package [17] above.
VoiceXML scripts can be referenced (or included inline) as part of media control messages; for example, the message

<dialogstart src=” http://server.example.com/script.vxml” type=”application/voicexml+xml”/>
could be sent from the AS to the MRFC in order to initiate a VoiceXML dialog. Response and notifications about the dialog (dialogstarted, dialogexit, dialogerror, etc) are sent back over the control channel.

One consequent of using VoiceXML is that the VoiceXML scripts and its related resources need to be fetched from an entity on the application plane. The requirement still holds even if the initial VoiceXML script is specified inline in the media control message (as MSCP and the VoiceXML Control Package allow) since subsequent VoiceXML scripts as well as resources (such as grammars) may still need to be fetched. Furthermore, if any control package references resource using HTTP [8] URIs, then the MRFC shall support an interface which allows these resources to be fetched.

In terms of architecture, this model uses the existing MRFC interfaces together with one additional interface: a Cr interface to directly transport media control messages between the AS and MRFC and to allow the MRFC to fetch resources. Figure 4.3.2.1 shows an MRFC with this interface.

[image: image3.emf]MRFC

AS

S-CSCF

HTTP

Mp

Mr

SIP

Cr

TCP/SCTP

H.248

ISC

SIP

Figure 4.3.2.1: MRFC interfaces: Cr, Mr and Mp
Note that the framework allows the AS to establish multiple dedicated control channels towards the MRFC; it could for example use one channel per MRFC, one channel per session, or other configurations suitable for High Availability deployments.

4.3.2.1
New Interface: Cr

The protocol model with dedicated control channel requires a new MRFC interface, “Cr”. The 3GPP SA2 group would have to be consulted for the creation of this new interface.
Dedicated TCP/SCTP channels between the AS and MRFC flow over the Cr interface.

Media control packages are transmitted bi-directionality over the channels: either endpoint can send requests, responses and notifications depending on the package definitions.

The establishment and management of these channels shall follow the SIP Control Framework: i.e. using SIP over the Mr interface to establish the channel, and to negotiate control package support.
The Cr interface enables the MRFC to fetch documents (scripts and other resources) from an entity on the application plane.

The entity can provide these documents either from local storage or generated at runtime. The entity may be an AS if the AS supports the protocol requirements below.

The Cr interface’s use for fetching documents is asymmetrical: fetch requests are only initiated by the MRFC – the application plane entity can only respond to requests.

HTTP [8] is an asymmetrical protocol which is extensively deployed for document fetching. HTTP also provides a caching model which permits fetches optimization and can thereby reduce traffic on the network. For example, documents may be fetched only when they have expired in the local cache; and fetching can be configured so that documents are not fetched at all if there is an unexpired version in the local cache.

The Cr interface shall support the HTTP [8] protocol (including full caching capabilities). Specifically, the MRFC shall support the HTTP client role and the application plane entity shall support the HTTP server role. The Cr interface should support HTTPS (where IMS network topology requires a secure connection is required). The Cr interface may support other protocols with an asymmetrical request-response model.
4.3.2.3
 Properties

The protocol model uses a dedicated transport channel to transmit media control messages between the MRFC and AS. This avoids the problems described above with transmitting these messages over SIP INFO. The dedicated control channel in Control Framework has growing support within IETF.

The protocol model organizes media control messages into packages. This allows different MRFs to support different functionality package and, as described in the Control Framework [9], for an AS to determine which packages are supported by which ASs. Packages also facilitate future extensions to MRF functionality.

The protocol model’s Cr interface shares many similarities with the Mp interface including use of TCP connections over which messages organized by functionality are transmitted. Refer to section 6.2.3 which describes the Mp interface in more detail. The protocol model also provides an explicit mechanism for discovery and establishment of the control channel.
AS developers can use the protocol model within familiar API development environment which allows TCP connections to be created and XML messages transmitted over them. The state of media interaction is managed centrally within their application and they have full control over the MRFC since responses and notifications are returned over the control channel. At the same time, they can choose to delegate part of an IVR interaction to the MRFC by using the VoiceXML control package [17]: the MRFC would then locally manage the VoiceXML interaction while the AS retains global management (it receives notifications on key changes of dialog state – started, exited, etc – through the control channel).

The protocol model fits with the existing MRFC architecture with the addition of one new interface, Cr. The Cr interface uses a well-known HTTP [8] protocol to fetch resources and is based on an emerging protocol with growing IETF support, and its setup is based on COMEDIA [11] which is well-established.

Use of VoiceXML [5][6] in control messages covers the IVR functions of the MRF and allows simple as well as complex interactive behavior to be defined in scripts. Existing VoiceXML applications (e.g. voice mail, prepaid, portals, self-service applications) can be easily and rapidly adopted within a 3GPP IMS context with minimal application recoding.

4.4
AS and MRFC functional split for conferencing

This section is aimed to introduce the SIP tightly coupled conference and the collocated AS/MRFC model depicted in [24]. The terminology and concepts are re-used from the corresponding standard [19]. Please Note that the on-going 3GPP work described in [24] is based on a subset of [19].

The subsequent section will explore the decomposed AS/MRFC model depicted in [19] where the conference functionality is split over the conferencing application server (hereafter called AS) and the MRFC.

Editor’s note: The AS/MRFC functional split should be identical for both SIP [19] and XCON conferencing models.
A SIP tightly coupled model conference is an association of SIP user agents (i.e., conference participants) with a central point (i.e., a conference focus), where the focus has direct peer-wise relationships with the participants by maintaining a separate SIP dialog with each. The focus is a SIP user agent that has abilities to host SIP conferences including their creation, maintenance, and manipulation using SIP call control means (and potentially other non-SIP means). In this tightly coupled model depicted hereafter, the SIP conference graph is always a centralized star. The conference focus maintains the correlation among conference's dialogs internally.

As stated in [24] section 5.2.3 the functional split between the MRFC and the conferencing AS is out of scope, this section is focused to describe this model while the next section will depict the functional split.

[image: image4.emf]Conference

Policy

Server

Conference

Notification Server

Low-level Conference Focus

MIXER

Floor Control

Server

Conference

Policy

Media

Conference

Policy

AS

MRFP

Mr Interface

Mp Interface

RTP / RTCP BFCP

Top-level Conference Focus

MRFC

ISC Interface

S-CSCF

XML over

HTTP/s

Mw Interface

Media

Conference

Policy Server

Sr Interface

The following figure depicts the main logical functions that are located at the AS/MRFC and MRFP levels.

Figure 4.4.1: Conference logical functions spread over AS/MRFC and MRFP

As stated in [24] the conference focus, the conference policy server, media conference policy server and the notification server are collocated in the AS/MRFC.

For a given conference, the conference policy server is in charge to provide the conference policy, and the media conference policy server to provide the Media conference policy. The Conference focus is in charge to load these 2 conference policies at conference creation time and to govern the conference execution accordingly. These conference policies are XML based file defined in [23] (note that [23] defines the global data model where the 2 policies are combined). The conference focus informs the conference notification server on conference state changes, it is in charge to provide support for the conference notification service defines in [24] section 5.3.3.

The MRFP is connected to MRFC(s) through the Mp interface; it hosts the Mixer function and the floor control server function as defined in [25]. The Mixer is connected to the UE through the RTP/RTCP protocols and the floor control server is connected to the floor control client (hosted by the UE) through the Binary Floor Control Protocol as defined in [25]. The Mp interface is intended to carry the commands provided by the conference focus to the mixer and to send back events from the mixer, in addition the Mp interface also carry the floor control requests and floor control responses from/to the floor control server.

4.4.1 Functional split between the AS and MRFC

The following figure depicts the functional split between the AS and the MRFC; the MRFP is unchanged from previous section.

[image: image5.emf]Conference

Policy

Server

Conference

Notification Server

Conference Focus

MIXER

Floor Control

Server

Conference

Policy

Media

Conference

Policy

AS/ MRFC

MRFP

Mr Interface

Mp Interface

RTP/RTCP BFCP

Media

Conference

Policy Server

Figure 4.4.1.1: Functional split between the AS and MRFC

This model has been introduced in [19] in an IETF context, where the conference logic is split between two set servers:

AS

· It is seen as the top-level focus by the conference’s participants, it is addressed by conference URIs.

· Implements the Conference Policy Server, thus acting as the logical function between the end-user and conference policies. This logical function is used by the end-user to subscribe to the conference service and also to modify its conference preferences.

· Execute the overall conference policies (Life-cycle, Membership, Authorization), except the media conference policy that is delegated to the MRFC.

· Might support a conference notification server using SIP SUBSCRIBE and NOTIFY mechanism as per [26].

· Might support advanced billing models: prepaid, postpaid, shared charging between participants, pay per conference, pay per codec, etc.
MRFC

· The low-level conference focus that is contacted only by top-level focus, this relationship is private.

· Load and execute the media conference policies (in addition to simple Life-cycle policy) that are dynamically fetched from the AS at the conference creation time.

· Control Audio/Video/Text mixers.

· Might generate Conference Detailed Records in XML format.

The focus as seen by the conference’s participants defined in [19] is hosted by the AS, it is called the “top-level focus”. The MRFC also hosts a focus logical function, but this focus is not directly addressed by the conference participants, only through the top-level focus. This “low-level focus” has limited actions:

· It cannot add a new conference participant or remove a participant on its own; this action is under the AS responsibility.

· Its main responsibility is upon reception of SIP INVITE to check that the Session Description Protocol offer or answer [27][28] matches with the media conference policy parameters (for instance the codec type or the codec bit rate). Based on that processing it can accept, reject or modify the participant’s SIP session setup and control accordingly the mixer.

· It is important to notice that the low-level focus should be authorized to dynamically modify the multimedia session profile through SIP re-INVITE in order to fit with network condition changes (either reported by the AS or the UE, or reported by the MRFP).

The communication between the top-level and low-level focus(es) can use both delegation and protocol models, for example NETANN [3] for a simple conference and MSCML [15] for an advanced conference. NETANN or MSCML can be extended in order to carry the URL of the media conference policy by using the optional parameter of the SIP Request-URI, for instance:

sip:conf=1234@mrfc.hp.com;confpolicy=http://sipas.hp.com/policy/media-conf1234.xml

This allows the MRFC to dynamically fetch the media conference policy delegated from the AS at the conference creation time (and if necessary updates via mid-call XML).

This last section is aimed to provide a view on the advantages and drawbacks of the decomposed AS / MRFC model.

Advantages
· Better decoupling of role & responsibilities enabling fine grained scalability of either the AS or MRFC functions:

· The AS is in charge of the conference application logic, in addition to notification service and conference policy server.

· The AS does not have to deal with the underlying complexity of the SDP base format [27] plus the specific extensions for each audio/video codec, and the SDP Offer/Answer model [28].

· One AS can use multiple MRFCs for complex or large conference scenario.

· The AS can make a finer conference resource management, for instance by specializing MRFC for Audio or Audio/Video or Text.

· The MRFC is dedicated to load & execute the media conference policy and control the mixers accordingly.

· Better availability model, in case of MRFC failure, the AS can re-connect the participants to another MRFC instance.

· Allow the AS to focus on the overall service orchestration, like chaining of XDMS service and presence service with conferencing service.

· The AS can be located in a different network than MRFC(s).

Drawbacks
· Floor control message exchanges are not normalized between the MRFC and AS, The delay generated between the MRFC and AS nodes can degrade the user interactivity (one may argue here that some floor control delegation is also mandatory to preserve acceptable responsiveness to end-user’s inputs).
6
Relevant Specifications

6.1
Introduction

The present section lists existing standards, RFC’s or published specifications relevant to the study of media server control protocols together with a brief description of the work and its relevance.

6.2
Standards and draft standards

6.2.1
VoiceXML
VoiceXML [5][6] is an XML scripting language for interactive media functionality.

The language defines an extensive set of tags which cover output functionality (media files and speech synthesis), input (DTMF, speech recognition and recording), logic (if-then-else), data model (scoped variables), events (noinput, nomatch) as well as a well-defined dialog algorithm (FIA) which manages a flow of input-output transactions. The language allows external resources – for example, DTMF or speech recognition grammars – to be specified in the VoiceXML document and fetched using the Sr interface. Depending on the flow of the interaction, further VoiceXML documents can be fetched and control transferred to the fetched document. VoiceXML also allows data to be passed to the application plane entity when a VoiceXML document or resource is fetched. VoiceXML supports both simple and complex interactive media behavior.

The current version, VoiceXML 2.0 [5], is W3C Recommendation (standard) which has extensive industry support and existing commercial deployments in the telecom sector. It is also supported by most IETF informational and working draft proposals (RFC4240, draft-burke-vxml-01, MSML, MSCP, SIP Control Framework) for media interaction. W3C is also actively developing this standard with VoiceXML 2.1 [6] due out soon and VoiceXML 3.0 on the horizon.

VoiceXML does have some issues which may need to be addressed in the MRFC context. Firstly, if interactive video capability is an MRF requirement, then VoiceXML 2.0 has no explicit support. However, as described in http://www.voicexmlreview.org/Mar2006/features/video_interactive_services.html, this can be largely addressed in the current version without compromising interoperability and VoiceXML 3.0 is expected to explicitly addressing it. Secondly, VoiceXML has tags which allow the caller to be transferred (blind or bridged) to another telephone destination. This may be problematic if an MRF is not permitted to generate outbound calls. However, this feature of VoiceXML is optional and could be addressed by a VoiceXML profile for the MRFC use case. To overcome this limitation the MRFC may request the AS to initiate outbound calls or call transfers on its behalf. Finally, there may be cases where 3GPP wishes to extend VoiceXML with additional or different functionality. W3C have recognized this type of VoiceXML usage and VoiceXML 3.0 is expected to have a modularization framework which allows profiles, including a media server profile, and new languages to be defined.

In summary, the key benefits of VoiceXML are that it is an existing, well-supported, international standard and provides the interactive media functionality required in an MRFC context.
6.4
Informational RFC’s
6.4.1 RFC 4240 (‘netann’)

RFC 4240 [3] (also known as ‘netann’) provides a mechanism for invocation of basic media services on the MRFC using SIP. RFC 4240 defines three services:

1. Announcement: play a media resource to the SIP connection

2. Dialog: invoke a VoiceXML dialog to the SIP connection

3. Conferencing: join the SIP connection to a simple conference

A service is invoked by means of the SIP INVITE Request-URI: the user part indicates the service, and additional URI parameters can be specified to configure the service. If the MRFC supports the service, and the service parameters are acceptable, the service is initiated when the ACK message is received and continues until a BYE message is sent or received. If the MRFC does not support the service, or there is a problem with the parameters or resource, the MRFC returns the appropriate SIP error status codes.

The announcement service is invoked by a Request-URI with user portion “annc” and URI parameters controlling the content and delivery of the announcement, including the mandatory parameter “play” indicating the resource to play. For example,

sip: annc@mrfc.example.com;play=http://asexample.com/welcome.wav

If the resource “http://as.example.com/welcome.wav” cannot be found or retrieved, error codes are returned. Otherwise, the resource is played to completion and then a BYE is returned.

The dialog service is invoked with a Request-URI with user portion “dialog” and URI parameters controlling the content and delivery of the dialog, including the mandatory parameter “voicexml” indicating the VoiceXML script to execute.

For example, sip: dialog@mrfc.example.com;play=http://vxml.example.com/promptandcollect.vxml

Again, error codes are returned if the script cannot be found. Otherwise, the VoiceXML script at http://vxml.example.com/promptandcollect.vxml is executed.

The conference service is invoked with a Request-URI with the user part “conf-<uniqueid>” where ‘uniqueid” identifies a unique conference mixing session. For example,

sip: conf-id100@mrfc.example.com

If the conference session identified by the URI “conf-id100@mrfc.example.com” does not exist on the media server but conferencing resources are available, then the MRFC creates a new mixing session and the SIP UE is joined to the conference. If a conference already exists, then the UE is joined to the conference mix. A UE leaves the conference by issuing a BYE on its SIP dialog. A conference session exists as long as there is at least one SIP dialog joined to the conference.

RFC4240 is well accepted in the industry due to the simplicity of how these media services are identified and invoked.

This simplicity, however, requires RFC4240 to be augmented with other specifications to attain desired MRFC functionality, especially for conferencing and IVR. Media languages like MSCML, MSML and MSCP go beyond RFC4240 in order to provide advanced conferencing services which support explicit conference setup, etc. Moreover, its description of the VoiceXML dialog service is incomplete: the current description is insufficient for interoperable implementations. In particular, the VoiceXML dialog service needs to address issues such as how Request-URI parameter data is mapped into VoiceXML, how data can be sent to the AS mid-call, how media support is achieved and how VoiceXML’s (optional) outbound calling functionality is addressed. The draft-burke specification [4] builds on RFC4240 to address these issues (see Section 6.5.1)
6.4.2 RFC 4722 (‘MSCML’)
Media Server Control Markup Language (MSCML) is a markup language used in conjunction with SIP to provide advanced conferencing and interactive voice response (IVR) functions. MSCML presents an application-level control model, as contrasted to device-level control models.

The RFC describes the Media Server Control Markup Language (MSCML) and its usage. It describes payloads that one can send to a media server using standard SIP INVITE and INFO methods and the capabilities these payloads implement. It builds on the RFC 4240 [3] use of media server SIP URI formats.

Prior to MSCML, there was not a standard way to deliver SIP-based enhanced conferencing. Basic SIP constructs, such as those described in RFC 4240 [3], serve simple n-way conferencing well. The SIP URI provides a natural mechanism for identifying a specific SIP conference, while INVITE and BYE methods elegantly implement conference join and leave semantics. However, enhanced conferencing applications also require features such as sizing and resizing, in-conference IVR operations (e.g., recording and playing participant names to the full conference), and conference event reporting. MSCML payloads within standard SIP methods realize these features.

The structure and approach of MSCML satisfy the requirements set out in RFC 4353 [19]. In particular, MSCML serves as the interface between the conference server or focus and a centralized conference mixer. In this case, a media server has the role of the conference mixer.

There are two broad classes of MSCML functionality. The first class includes primitives for advanced conferencing, such as conference configuration, participant leg manipulation, and conference event reporting. The second class comprises primitives for interactive voice response (IVR). These include collecting DTMF digits and playing and recording multimedia content.

 MSCML fills the need for IVR and conference control with requests and responses over a SIP transport. VoiceXML [5][6] fills the need for IVR with requests and responses over an HTTP transport. This enables developers to use whatever model fits their needs best.

In general, a media server offers services to SIP UACs, such as Application Servers, Feature Servers, and Media Gateway Controllers. See the IPCC Reference Architecture [21] for definitions of these terms. It is unlikely, but not prohibited, for end-user SIP UACs to have a direct signaling relationship with a media server. The term "client" is used in this document to refer generically to an entity that interacts with the media server using SIP and MSCML.

The media server can potentially fulfill the role of the Media Resource Function (MRF) in the IP Multimedia Subsystem (IMS) as described by 3GPP. MSCML and RFC 4240 [3], upon which MSCML builds, are specifically focused on the Media resource (Mr) interface which supports interactions between application logic and the MRF.

RFC 4722 describes a working framework and protocol with which there is considerable implementation experience. Application developers and service providers have created several MSCML-based services since the availability of the initial version in 2001. This experience is highly relevant to the ongoing work of the IETF, particularly the SIP, SIPPING, MMUSIC, and XCON work groups, the IMS work in 3GPP, and the CCXML [7] work in the Voice Browser Work Group of the W3C.

It is critically important to emphasize that the goal of MSCML is to provide an application interface that follows the SIP, HTTP, and XML development paradigm to foster easier and more rapid application deployment. This goal is reflected in MSCML in two ways.

First, the programming model is that of peer to peer rather than master-slave. Importantly, this allows the media server to be used simultaneously for multiple applications rather than be tied to a single point of control. It also enables standard SIP mechanisms to be used for media server location and load balancing. Second, MSCML defines constructs and primitives that are meaningful at the application level to ensure that programmers are not distracted by unnecessary complexity. For example, the mixing resource operates on constructs such as conferences and call participants rather than directly on individual media streams.

The MSCML paradigm is important to the developer community, in that developers and operators conceptually write applications about calls, conferences, and call legs. For the majority of developers and applications this approach significantly simplifies and speeds development.

As mentioned above, MSCML payloads may be carried in either SIP INVITE or INFO requests. The initial INVITE, which creates an enhanced conference, MAY include an MSCML payload. A subsequent INVITE to the same Request-URI joins a participant leg to the conference. This INVITE MAY include an MSCML payload. The initial INVITE that establishes an IVR session MUST NOT include an MSCML payload. The client sends all mid-call MSCML payloads for conferencing and IVR via SIP INFO requests.

SIP INVITE requests that contain both MSCML and Session Description Protocol (SDP) body parts are used frequently in conferencing scenarios. Therefore, the media server MUST support message bodies with the MIME type "multipart/mixed" in SIP INVITE requests. The media server transports MSCML responses in the final response to the SIP INVITE containing the matching MSCML request or in a SIP INFO message. The only allowable final response to a SIP INFO containing a message body is a 200 OK, per RFC 2976 [20]. Therefore, if the client sends the MSCML request via SIP INFO, the media server responds with the MSCML response in a separate INFO request. In general, these responses are asynchronous in nature and require a separate transaction due to timing considerations.

There has been considerable debate on the use of the SIP INFO method for any purpose. The experience of the MSCML authors is that MSCML would not have been possible without it. At the time the first MSCML specification was published, the first SIP Event Notification draft had just been submitted as an individual submission. At that time, there was no mechanism to link SUBSCRIBE/NOTIFY to an existing dialog. This prevented its use in MSCML, since all events occurred in an INVITE-established dialog. And while SUBSCRIBE/NOTIFY was well suited for reporting conference events, its semantics seemed inappropriate for modifying a participant leg or conference setting where the only "event" was the success or failure of the request. Lastly, since SIP INFO was an established RFC, most SIP stack implementations supported it at that time. There have been few, if any, interoperability issues as a result.

In order to guarantee interoperability with this specification, as well as with SIP User Agents that are unaware of MSCML, SIP UACs that wish to use MSCML services MUST specify a service indicator that supports MSCML in the initial INVITE. RFC 4240 [3] defines the service indicator "conf", which MUST be used for MSCML conferencing applications. The service indicator "ivr" MUST be used for MSCML interactive voice response applications. In this specification, only "conf" and "ivr" are described.

The media server MUST support moving the call between services through sending the media server a BYE on the existing dialog and establishing a new dialog with an INVITE to the desired service. Media servers SHOULD support moving between services without requiring modification of the previously established SDP parameters. This is achieved by sending a re-INVITE on the existing dialog in which the Request-URI is modified to specify the new service desired by the client. This eliminates the need for the client to send an INVITE to the caller or gateway to establish new SDP parameters.

The media server, as a SIP UAS, MUST respond appropriately to an INVITE that contains an MSCML body. If MSCML is not supported, the media server MUST generate a 415 final response and include a list of the supported content types in the response per RFC 3261 [2]. The media server MUST also advertise its support of MSCML in responses to OPTIONS requests, by including "application/mediaservercontrol+xml" as a supported content type in an Accept header. This alleviates the major issues with using INFO for the transport of application data; namely, the User Agent's proper interpretation of what is, by design, an opaque message request.

6.5
Internet-drafts

6.5.2 Media Control Requirements Draft

The IETF is in the process of establishing a working group for Media Control. This activity is focusing on the interface between an Application Server and a Media Server, via SIP and XML based markup languages. There are also prospects that the results of this work could be adapted by the 3GPP for control of an MFRC. The document known as the “Dolly draft” [22] offers a draft set of requirements for such an interface. In particular, the document addresses the need for an XML-based protocol that can be used to control a variety of different media sessions, which may include Interactive Voice Response and Enhanced Conferencing Control. The document also anticipates that various types of media can be addressed via these controls, including voice, tones and video. The Dolly draft builds upon a great deal of industry experience with mid-call XML being carried via SIP. Details on this Internet Draft, entitled “Media Control Protocol Requirements”, draft-dolly-xcon-mediacntrlframe-02.txt, follow.

The “Dolly draft”, is a document that provides a set of requirements for controlling media servers as part of the pending IETF Mediactrl activity. In this pending working group, there is an interest to work on a protocol that will enable one physical entity that includes the media policy server, notification server and the focus to interact with one or more physical entities that serves as mixer or media server.

The “Dolly draft” presents the requirements for such a protocol. It addresses all phases and aspects of media handling in an enhanced conferencing service including announcements and IVR functionality.

The Media Server work uses when appropriate and expands on the terminology introduced in RFC 4353 [19] on the SIP conferencing framework and the XCON conferencing framework. The following additional terms are defined for use within the Media Server work.

Application Server (AS) - The application server includes the conference policy server, the focus and the conference notification server as defined in the SIP conferencing framework [19].

Media Server (MS) - The media server includes the mixer as defined in the SIP conferencing framework [19]. The media server sources media streams for announcements and it processes media streams for functions like DTMF detection and transcoding. The media server may also record media streams for supporting IVR functions like announcing participants

Notification - A notification is used when there is a need to report event related information from the MS to the AS.

Request - A request is sent from the controlling entity, such as an Application Server, to another resource, such as a Media Server, asking that a particular type of operation be executed.

The document goes on to define a set of Media Control requirements and some operational requirements.

Examples of specified Media Control requirements include:

REQ-MCP-01 - There MUST be a requirement for a control protocol that will enable one or more Application Servers to control a media server.

REQ-MCP-02 - The protocol MUST be independent from the transport protocol.

REQ-MCP-03 - The protocol MUST use a reliable transport protocol.

REQ-MCP-04 - The application scope of the protocol shall include Enhanced Conferencing Control and Interactive Voice Response. Though the protocol enables these services, the functionality is invoked through other mechanisms.

REQ-MCP-05 - The protocol will utilize an XML markup language.

REQ-MCP-07 - Media types that are supported in the context of the applications shall include audio, tones, text and video.

The IETF has not yet officially approved the Mediactrl working group as of this writing, but it is anticipated that the “Dolly draft” will form the basis for Media Control requirements once the working group is established.

� EMBED Visio.Drawing.11 ���

� EMBED Visio.Drawing.11 ���

�PAGE \# "'Page: '#'�'" �� Enter the specification number in this box. For example, 04.08 or 31.102. Do not prefix the number with anything . i.e. do not use "TS", "GSM" or "3GPP" etc.

�PAGE \# "'Page: '#'�'" �� Enter the CR number here. This number is allocated by the 3GPP support team. It consists of at least four digits, padded with leading zeros if necessary.

�PAGE \# "'Page: '#'�'" �� Enter the revision number of the CR here. If it is the first version, use a "-".

�PAGE \# "'Page: '#'�'" �� Enter the version of the specification here. This number is the version of the specification to which the CR was written and (normally) to which it will be applied if it is approved. Make sure that the latest version of the specification (of the relevant release) is used when creating the CR. If unsure what the latest version is, go to � HYPERLINK "http://www.3gpp.org/3G_Specs/3G_Specs.htm" ��� � HYPERLINK "http://www.3gpp.org/specs/specs.htm" ��http://www.3gpp.org/specs/specs.htm�.

�PAGE \# "'Page: '#'�'" �� For help on how to fill out a field, place the mouse pointer over the special symbol closest to the field in question.

�PAGE \# "'Page: '#'�'" �� Mark one or more of the boxes with an X.

�PAGE \# "'Page: '#'�'" �� SIM / USIM / ISIM applications.

�PAGE \# "'Page: '#'�'" �� Enter a concise description of the subject matter of the CR. It should be no longer than one line, but if this is not possible, do not enter hard new-line characters. Do not use redundant information such as "Change Request number xxx to 3GPP TS xx.xxx".

One or more organizations (3GPP Individual Members) which drafted the CR and are presenting it to the Working Group.

For CRs agreed at Working Group level, the identity of the WG. Use the format "xn" where �	x = "C" for TSG CT, "R" for TSG RAN, "S" for TSG SA, "G" for TSG GERAN; �PAGE \# "'Page: '#'�'" ���	n = digit identifying the Working Group; for CRs drafted during the TSG meeting itself, use "P". �Examples: "C4", "R5", "G3new", "SP".

�PAGE \# "'Page: '#'�'" �� Enter the acronym for the work item which is applicable to the change. This field is mandatory for category F, A, B & C CRs for Release 4 and later. A list of work item acronyms can be found in the 3GPP work plan. See �� HYPERLINK "http://www.3gpp.org/ftp/Specs/html-info/WI-List.htm" ��http://www.3gpp.org/ftp/Specs/html-info/WI-List.htm� .

�PAGE \# "'Page: '#'�'" �� Enter the date on which the CR was last revised. Format to be interpretable by English version of MS Windows ® applications, e.g. 19/02/2006.

�PAGE \# "'Page: '#'�'" �� Enter a single letter corresponding to the most appropriate category listed. For more detailed help on interpreting these categories, see Technical Report �HYPERLINK "http://www.3gpp.org/ftp/Specs/html-info/21900.htm"��21.900� "TSG working methods".

�PAGE \# "'Page: '#'�'" �� Enter a single release code from the list below.

�PAGE \# "'Page: '#'�'" �� Enter text which explains why the change is necessary.

�PAGE \# "'Page: '#'�'" �� Enter text which describes the most important components of the change. i.e. How the change is made.

�PAGE \# "'Page: '#'�'" �� Enter here the consequences if this CR were to be rejected. It is mandatory to complete this section only if the CR is of category "F" (i.e. correction), though it may well be useful for other categories.

�PAGE \# "'Page: '#'�'" �� Enter the number of each clause which contains changes. Be as specific as possible (ie list each subclause, not just the umbrella clause).

�PAGE \# "'Page: '#'�'" �� Tick "yes" box if any other specifications are affected by this change. Else tick "no". You MUST fill in one or the other.

�PAGE \# "'Page: '#'�'" �� List here the specifications which are affected or the CRs which are linked.

�PAGE \# "'Page: '#'�'" �� Enter any other information which may be needed by the group being requested to approve the CR. This could include special conditions for it's approval which are not listed anywhere else above.

_1213705630.vsd
MRFC

AS

S-CSCF

H.248

HTTP

ISC

Mp

Mr

SIP

Cr

TCP/SCTP

SIP

_1231237570.vsd

ActorClass

actorReference

state

_1231252000.vsd

ActorClass

actorReference

_1217414299.vsd
MRFC

Terminating
UE

AS

MRFC fetches VoiceXML script

8. SIP 200 (OK)

MRFC plays prompts and collects digits

11. SIP BYE

13. SIP 200 (OK)

7. SIP 200 (OK)

1. SIP INVITE

3. SIP 100 (Trying)

BYE payload include collected digits

RTP

2. SIP INVITE

4. SIP 100 (Trying)

12. SIP BYE

14. SIP 200 (OK)

9. SIP ACK

5. Sr: HTTP
Request

10. SIP ACK

6. Sr: HTTP
Response

MRFC extracts service information from Request-URI

_1213702955.vsd
MRFC

AS

S-CSCF

Sr

HTTP

Mp

Mr

SIP

ISC

SIP

H.248

