Error! No text of specified style in document.
8
Error! No text of specified style in document.

3GPP TSG CT WG1 Meeting #46
C1-070751
Warsaw, Poland: 26th – 30th March 2007.
Source:
Hewlett-Packard
Title:
Discussion, SCXML description
Agenda item:
9.3

Document for:
APPROVAL
Introduction:

For the delegation model, SCXML is an alternative to CCXML as a MRFC script language to manage and choreograph capabilities running on the MRFC.
Unlike CCXML, SCXML provide no built-in functionality beyond the ability to invoke (external) components, as well as send event messages to, and receive messages from, such components.
SCXML is being used in media applications to control and coordinate VoiceXML and multimodal components, as well as non-media applications to coordinate between web services or components both for network services and clients.

Proposal:

It is proposed that the information provided below is agreed and transferred to 3GPP TR 24.880.

2
References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

· References are either specific (identified by date of publication, edition number, version number, etc.) or non‑specific.

· For a specific reference, subsequent revisions do not apply.

· For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same Release as the present document.

[1]
3GPP TR 21.905: "Vocabulary for 3GPP Specifications".

[2]
RFC 3261 (June 2002): "SIP: Session Initiation Protocol".

[3]
RFC 4240 (December 2005): "Basic Network Media Services with SIP"
[4]
draft-burke-vxml: "SIP Interface to VoiceXML Media Services".

[5]
W3C Recommendation (March 2004): "Voice Extensible Markup Language (VoiceXML) Version 2.0".

[6]
W3C Candidate Recommendation (June 2005): "Voice Extensible Markup Language (VoiceXML) Version 2.1".

[7]
W3C Working Draft (June 2005): "Voice Browser Call Control: CCXML Version 1.0".

[8]
RFC 2616 (June 1999): "Hypertext Transfer Protocol -- HTTP/1.1".

[9]
draft-boulton-sip-control-framework: "A Control Framework for the Session Initiation Protocol (SIP)".

[10]
draft-mcglashan-mscp: "Media Server Control Protocol (MSCP)".

[11]
RFC 4140 (September 2005): "TCP-Based Media Transport in the Session Description Protocol (SDP)".

[12]
draft-ietf-simple-message-sessions: "The Message Session Relay Protocol".

[13]
draft-ietf-speechsc-mrcpv2: "Media Resource Control Protocol Version 2 (MRCPv2)".

[14]
draft-saleem-msml: "Media Server Markup Language (MSML)".

[15]
RFC 4722 (Noivember, 2006) : "Media Server Control Markup Language (MSCML) and Protocol".

[16]
draft-boulton-ivr-control-package: "A Basic Interactive Voice Response (IVR) Control Package for the Session Initiation Protocol (SIP)".

[17]
draft-boulton-ivr-vxml-control-package: "A VoiceXML Interactive Voice Response (IVR) Control Package for the Session Initiation Protocol (SIP)".

[18]
draft-boulton-conference-control-package: "A Conference Control Package for the Session Initiation Protocol (SIP)".

[19]
RFC 4353 (February, 2006): "A Framework for Conferencing with the Session Initiation Protocol (SIP)"
[20]
RFC 2976 (October, 2000): "The SIP INFO Method".

[21]
International Packet Communications Consortium: "IPCC Reference Architecture V2" (June 2002).

[22]

draft-dolly-xcon-mediacntrolframe-02.txt: "Media Control Protocol Requirements".
[23]
draft-ietf-xcon-common-data-model: "A Common Conference Information Data Model for Centralized Conferencing (XCON)"
[24]
3GPP TS 24.147: "Conferencing using the IP Multimedia (IM) Core Network (CN) subsystem"
[25]
RFC 4582 (November 2006): "The Binary Floor Control Protocol (BFCP)"
[26]
RFC 4575 (August 2006): "A Session Initiation Protocol (SIP) Event Package for Conference State"
[27]
RFC 4566 (July 2006): "Session Description Protocol (SDP)"
[28]
RFC 3264 (June 02): "An Offer/Answer Model with the Session Description Protocol (SDP)"
[29]

W3C Working Draft (February 2007): “State Chart XML (SCXML): State Machine Notation for Control Abstraction”.
4
Media server control protocol study items
4.3
Choice of the transport channel for media server control
4.3.1
Delegation model

The delegation model is motivated by the notion that that the interface between the MRFC and an AS is a high level interface where the MRFC is a network entity to which an AS delegates execution of media behavior.

The interface is high level since the AS sends a script describing what media behavior should be performed, not how it should be performed in terms of low-level media operations. The script describes the media behavior in terms of a flow of functions (play prompt, collect DTMF, add participant to conference, etc) and control logic for managing and adjusting the flow (e.g. adjusting for behavior in case of media operation failures), fetching additional scripts and resources, and reporting intermediate data.

The MRFC contains script engines which executes these scripts. The engine maintains the state of script execution and therefore the state of the media behavior execution. The engine’s execution environment contains components to manage relationships with other components, including the low-level media processors. Consequently, when an AS ‘delegates’ execution of media behavior to a MRFC, it means the MRFC has an execution state which is independent of the AS’s state – the MRFC not the AS manages the execution state of the media behavior. The controller instructs the MRFC which script to run, but the MRFC manages execution of the script itself.
In terms of architecture, this model uses the existing MRFC interfaces, together with one additional interface – the Sr interface. Figure 4.3.1.1 shows an MRFC with this interface.

[image: image1.emf]MRFC

AS

S-CSCF

Sr HTTP

Mp

Mr

SIP

ISC

SIP

H.248

Figure 4.3.1.1 MRFC interfaces: Sr, Mr and Mp
Using the ISC interface, an AS establishes a SIP [2] dialog to an MRFC (via a S-CSCF and Mr interface). The SIP INVITE request URI shall contain sufficient information to allow the MRFC to identify the script to execute; it may also provide additional parameters for the script. For example, using the user part to indicate a script pre-defined on the MRFC:

INVITE sip:myservice@mrf.example.com SIP/2.0
where "myservice" is predefined with a script on the MRFC, or specifying a script URI as a parameter:

INVITE sip:dialog@mrf.example.com;voicexml=http://server.example.com/script.vxml SIP/2.0
where a VoiceXML script is specified as the value of the parameter "voicexml". IETF Informational RFC 4240 [3] and Working Drafts draft-burke-vxml-01 [4] provide details on this mechanism.

The Sr interface is used by the MRFC to fetch the script and related resources. Once these have been fetched, the script is executed by the MRFC. Depending on the contents of the script, its execution may involve sending data and fetching additional scripts and resources over the Sr interface. The interaction is terminated when a SIP BYE is sent; the AS can send a BYE to terminate script execution at any time, and the MRFC sends a BYE when execution of the script terminates.
The content of the scripts is dependent on the media behavior which the MRFC needs to execute. W3C has already done extensive work on defining scripting for use in the delegation model. VoiceXML [5] provides a scripting language for interactive media functions; VoiceXML [5] is motivated in Section 6.2.1. CCXML [7] provides a scripting language for conferencing, dialog invocation and outbound dialing; CCXML [7] is motivated in Section 6.2.2. SCXML [29] is a generic event-driven state machine language which can be extended with support for dialog and conferencing functionality. SCXML is motivated in Section 6.2.3,
In several scenarios, scripts executed by the MRFC may request to perform actions which may not be allowed on MRFC. Such actions may include, but are not limited to, outgoing call establishment and call transfer (since the MRFC description is not clear whether these are permitted MRFC functons). For such scenarios a mechanism should be defined to deliver the action information from MRFC to AS and then performing the action by AS. Such mechanism may utilize existing interfaces between MRFC and AS (i.e. ISC and Mr) or new ones (Sr or Cr – see below).

RFC 4240 [3] provides fundamental technique for the delegation model, but it alone is insufficient for the range IVR and conferencing functions of the MRFC. RFC4240 is necessary since the delegation model uses the content of the Request-URI in an INVITE to identify and invoke media services. Each of these services imposes different requirements in terms of MRFC script engine complexity. The announcement service requires a simple engine which uses the Sr interface to fetch media resources. Likewise, the conference service requires a simple engine for simple conferencing. The VoiceXML dialog service requires a more complex script engine, but VoiceXML is well understood. Moreover, the description of the VoiceXML service in RFC4240 is incomplete and raises a number of issues. The description of this service in draft-burke [4] (which builds on RFC4240) addresses most of these issues (whether an MRFC can initiate outbound calls is still outstanding). If the deficiencies in RFC420 can be addressed in conjunction with other specifications, RFC4240 can provide a straightforward approach for identifying and invoking simple announcement and conferencing services as well as complex IVR services.

4.3.1.4
Properties

As a high-level interface, the delegation model is clearly distinguished from, and complements, the low-level H.248 model on the Mp interface. Application developers can use a high-level model – familiar to web application developers – where they script their media interaction and delegate it to the MRFC, or they can develop using a low-level model – familiar to the API developers - where they use a TCP connection to send detailed instructions to the MRFP and then manage its state themselves. In the delegation model, the media behavior is defined in a script at the application service layer, the control layer (MRFC) which executes the script and manages media flow, and the media layer (MRFP) which actually carries out the media functions specified in the script. In a low-level model, the service and control layers are combined in a hybrid AS/MRFC.

With the delegation model, the AS can choose how much control to delegate to the MRFC. This depends on the content of the script and the behavior the script can execute before it needs to fetch a new script through the Sr interface. The AS can then exercise fine-grained (tight, low-level) or coarse-grained (loose, high-level) control and can modulate this within a session. Approaches which use a dedicated control channel typically require the AS to retain fine-grained control for the whole session.

The delegation model has been extensively tested and deployed as part the web infra-structure model where it has been demonstrated as highly suitable for distributed service architectures. By reusing a well-tried model, 3GPP can focus on definition of MRFC profiles.

The delegation model fits with existing MRF architecture with only the addition of one new interface (which would be required by most alternative approaches if they explicitly recognized the need for an HTTP [8] fetching interface).

The Sr interface uses a well-known HTTP [8] protocol to fetch resources and provide responses/notifications.

The delegation model reduces the burden on the AS/CSCF to track the status, and interact with the MRFC, for the media part of interactive media, call and conferencing applications. This results in reduced network traffic with the MRFC since decisions about media flow are taken within the MRFC itself rather than passed up to the AS/CSCF for decision. For example, a single CCXML [7] or SCXML [29] script can be used to play announcement dialogs and to manage participants attending a conference, where a protocol approach will require multiple documents for creating the conference, playing dialogs, and adding/removing conference participants. Furthermore, this can reduce the response time for media control management: i.e. since the MRFC manages the flow locally, there is no need to request the AS/CSCF (e.g. via SIP INFO on ISC/Mr or a dedicated control TCP channel) to make a decision and await a response.

Use of VoiceXML [5] and CCXML [7] support the core functions of the MRF and allows simple as well as complex interactive behavior defined in scripts. Existing VoiceXML and CCXML applications (e.g. voice mail, prepaid, portals, self-service applications) can be easily and rapidly adopted within a 3GPP IMS context without the need for application recoding. SCXML [29] together with a profile which defines call, dialog and conferencing functionality required for an MRFC, is an alternative to CCXML.
As W3C languages, VoiceXML, SCXML and CCXML are developed and supported by an official W3C working group. There is minimum dependency on IETF working drafts submitted by individuals.

The Mr and ISC interface are only used for call-related functions (call establishment, management and tear-down): it is not used to transmit detailed media control messages to the MRFC or to establish dedicated control channels with the AS.

The delegation model facilitates different entities on the application layer to play different roles with respect to the MRFC. For example, a ‘gateway’ AS may initiate the sessions via the Mr interface, while others can receive HTTP requests and notifications via the Sr interface. Protocol-based approaches typically assume that the same AS which initiates the media session also interacts with the MRFC during the session.
4.5
AS programming and service implementation impacts on media server control
Two major models for AS programming and service implementation are:
· API model: the service is defined in terms of a programming language such as Java, C#, etc. Application frameworks such as J2EE or Parlay are frequently used to facilitate rapid development and integration with common components (e.g. with APIs towards databases and protocol stacks such as SIP and HTTP).

· Web model: the service is defined in terms of markup languages/scripts (e.g. VoiceXML, SCXML and CCXML). The scripts may be static - resident on the AS file system - or dynamic – in the latter case, techniques (such as JSP, ASP and Servlets) are used to dynamically generate script documents. Protocols such as HTTP are used to transmit the scripts.
Specific instance of AS services may incorporate elements from both models; for example, the Web model can use programming languages such as Java to implement some service logic in Servlets, while the API model can use Java to dynamically generate XML script documents for transport over SIP and/or HTTP.

While both the delegation model (Section 4.2) and the protocol model (Section 4.3) could be used with either AS programming model, the delegation models tends to be associated with the web model and the protocol model with the programming model.

The delegation model with its emphasis on ‘coarse-grained’ media commands fits well with an AS programming model where the media behaviour is defined in XML scripts (such as VoiceXML, SCXML and CCXML) which are independently executed on MRFC script engines. These scripts are located on the AS and retrieved by the MRFC using HTTP through the Sr interface. Scripts running on the MRFC can also provide notifications to the AS, as well as receive data updates through this interface. Furthermore, the AS can exercise more fine-grained control of the media behaviour by defining smaller scripts for the MRFC to execute so requiring the MRFC to retrieve further scripts from the AS through the Sr interface. In this way, the media flow and presentation state is delegated to the MRFC, while the AS retains overall control since scripts are defined (and can be dynamically generated) by the AS.

In the protocol model, the execution state of the service is implemented centrally by the program running in the AS and XML transmitted over the Cr interface provides fine-grained instructions to the MRFC – the AS retains more control over the media behaviour throughout service execution. However, the AS can choose to delegate some control to the MRFC by referencing or including scripts such as VoiceXML in its XML instructions.

Although there is a tendency to align the delegation model with the web model and the protocol model with the API model, the AS programming model does not significantly impact the choice of delegation versus protocol models, Both programming models can support use of HTTP to transmit resources and documents and both, to varying degrees, can support distributed control which in turn requires the MRFC to support script engines. If service developers prefer a single coherent environment for AS programming, then the delegation model with coarse-grained scripting (e.g. using VoiceXML, SCXML and CCXML) or the protocol model with relatively fine-grained XML messages (but no coarse-grained XML scripts, such as VoiceXML) are the most appropriate.
4.6
Packages, registration and extensibility

The capabilities of the MRFC need to be identified to the AS either directly as part of the control protocol itself or as a part of the AS-MRFC interaction model. Three issues relevant to capabilities are:

· Organization: Mechanisms by which MRFC functionality can be organized so that different MRFCs can support different media functionality. This mechanism could characterize functionality at two levels: major functionality (e.g. IVR only, conferencing only, IVR and conferencing) and the minor functionality (e.g. audio-video codec support, etc)

· Registration: Mechanisms by which an MRFC can advertise its supported (major and minor) functionality to interested parties, including ASs. This allows an AS to dynamically select an MRFC with the functionality appropriate to the service it wishes to run.

· Extensibility: Mechanisms by which an MRFC could define and advertise support for functionality which is non-standard or proprietary.

In the delegation model, functionality can be organized in terms of support for specific scripting languages. For example, an MRFC could specify that it support VoiceXML 2.1, SCXML 1.0 or CCXML 1.0 (where the standards themselves define which specific functionality must be supported by a conforming implementation). Later versions of these languages will provide more fine-grained organization using profiles defined in terms of functionality modules. If further fine-grained information needs to defined, a list of additional attributes (e.g. codec support, bargein support, transfer, etc) can be defined as part of a 3GPP profile for each language. None of these scripting languages provide builtin registration mechanisms. Therefore, an external mechanism needs to be identified for the delegation model to register MRFC capability, and support for this mechanism could be part of the 3GPP profile for these languages. Finally, extensibility is defined for script languages like VoiceXML using XML namespaces; i.e. the script can include properties, attributes and elements from other namespace which the script engine must ignore if it does not understand. Registration of extended capabilities would follow the same approach as for standard capabilities.

In the protocol model, some approaches use a mechanism whereby functionality is organized into packages (cf. H.248). For example, the SIP Control Framework [9] requires that functionality is organized into well-defined packages (such as ivr-basic, ivr-vxml, conference-basic, conference-advanced, etc). If more fine-grained capability information needs to be defined, a list of additional attributes (e.g. codec support, etc) can be defined as part of a 3GPP profile for each package. This protocol model approach provides a builtin mechanism by which a connecting AS can identify which functionality is supported. If capability registration is required prior to AS connection, then the approach advocates using standard SIP mechanisms (e.g. RFC 3840 "Indicating User Agent Capabilities in the Session Initiation Protocol (SIP)". Finally, this protocol model can support extensibility by defining new packages which incorporate the extended functionality.
5
MRFC deployment scenarios
5.2
Using different ASs to invoke, control and service the MRFC

In the simplest deployment scenario, the MRFC interacts with a single AS. However, an MRFC can also interact with multiple ASs where each AS carries out a different logical role in its interaction with the MRFC:

· Invoke role: AS invokes the MRFC by setting up a SIP signalling path between itself and the MRFC

· Control role: AS determines which service is to be executed on the MRFC

· Service role: AS which provides service data and resources for the MRFC

These roles are correlated with the interfaces between the AS and MRFC. The AS which invokes the MRFC must support an ISC/Mr interface with the MRFC. The interfaces required by the control and service role depend on the choice of control protocol models.

In the delegation model where scripts are used to provide the service, the control AS uses a SIP interface to specify which script is to be executed; for example, VoiceXML, SCXML and CCXML scripts are referenced as part of the Request-URI in the invocating SIP INVITE; i.e. a single AS plays the invocation and control roles towards the MRFC. A separate AS can carry out the service role using the Sr interface where HTTP is used to transport scripts and other service data. This leads to a distributed AS architecture where there is a well-defined separation between a SIP AS which invokes the MRFC and controls which service to execute on it, and an HTTP AS which provides the MRFC with the content of the service itself. This architecture is shown in Fig 5.2.1.

[image: image2.emf]MRFC

SIP

AS

S-CSCF

Sr HTTP

Mp

Mr

SIP

ISC

SIP

H.248

HTTP

Server

Figure 5.2.1: Multiple ASs with Delegation Model

There are some clear deployment benefits of this distributed AS architecture in terms of migration and cost. For operators with a service node architecture based on the web model, migrating to IMS only involves the addition of one new AS – a SIP AS which supports invocation and control roles. The service AS, on the other hand, can be exactly the same as their Web Server in the service node architecture: i.e. an HTTP AS which supports resource (static or dynamic) retrieval via HTTP. Furthermore, the cost and complexity of HTTP ASs is typically far lower than a SIP AS.

With the protocol model using a dedicated control channel and a separate http server, each role can be carried out by a separate server. For example, with the SIP Control Framework and packages, one (SIP) AS invokes the service (ISC/Mr) and, using another SIP dialog, sets up the control channel, a second (Control) AS uses the dedicated control channel (Cr) to pass control package messages, and a third (HTTP) server provides resources (e.g. audio files, VoiceXML scripts) over HTTP (Sr). This illustrated in Figure 5.2.2.

[image: image3.emf]MRFC

SIP

AS

S-CSCF

Sr HTTP

Mp

Mr

SIP

ISC

SIP

H.248

HTTP

Server

Control

AS

TCP Cr

Figure 5.2.2: Multiple ASs with Protocol Model and a separate HTTP server

Note that this functional model could, of course, be simplified in actual deployment, so that the roles are collapsed into a single AS or two ASs (e.g. one SIP AS for invocation, another Control/HTTP AS for control and service; or one SIP/Control AS for invocation and control, and other HTTP AS for service).

If the control and service role are collapsed into a single AS then the Cr interface can be used as illustrated in Figure 5.2.3.

[image: image4.emf]MRFC

SIP

AS

S-CSCF

Mp

Mr

SIP

ISC

SIP

H.248

Control/

HTTP

AS

HTTP

Cr

TCP/SCTP

Figure 5.2.3: Multiple ASs with protocol model – one AS performing control and service roles
6
Relevant Specifications

6.2
Standards and draft standards
6.2.1
VoiceXML
6.2.2
CCXML

6.2.3
SCXML

SCXML [29] is a general-purpose event-based state language based on Harel State Tables and incorporating some CCXML concepts.
Harel State Tables (as used in UML) provide a mathematically sound semantics for state machine notations. SCXML provides an XML representation of state machines and adheres to the Harel State Table semantics, thereby providing powerful and compact control abstracts. Capabilities include representation and processing of state machines with support for composite states, parallel states, history states, etc. SCXML inherits from CCXML a data model, asynchronous data submission, executable content and service invocation.
Unlike CCXML, SCXML provide no built-in functionality beyond the ability to invoke (external) components, as well as send event messages to, and receive messages from, such components. SCXML is being used in media applications to control and coordinate VoiceXML and multimodal components, as well as non-media applications to coordinate between web services or components both for network services and clients (for example, SCXML is part of Apache Shale, a web application framework based on JavaServer Faces). SCXML is also extensible: new functionality can be added using a profile which defines new elements; for example, it could be extended with (CCXML) tags to provide call handling and conferencing support.
For the delegation model, SCXML is an alternative to CCXML as a MRFC script language to manage and choreograph capabilities running on the MRFC; for example, to start an IVR dialog and, when it is complete, add the participant to a conference. SCXML has the benefit that no media functionality is built into the language (unlike CCXML), so an MRFC profile can be built which would fit the requirements without bringing unwanted features. For example, a MRFC profile might include media support for inbound calls, IVR dialog invocation and multimedia conferencing only. Furthermore, the profile can specify whether these capabilities are part of the language (e.g. adding a <conference> tag) or required components which a SCXML script can <invoke> and send/receive messages.
As an example of how SCXML could coordinate VoiceXML and multimedia conferencing, assume a MRFC profile where SCXML support additional tags for <accept> ing and <disconnect>ing incoming calls and call alerting events (cc namespace) as well as tags and events for creating and manipulating multimedia conferences (mc namespace). The SCXML script to execute is specified in the SIP INVITE received on the Mr interface; for example,

INVITE sip:control@mrf.example.com;scxml=http://server.example.com/conference.scxml SIP/2.0

The SCXML script would then be fetched with HTTP using the Sr interface. Upon execution of the script, the SCXML fires a cc ‘alerting’ event indicating that an incoming SIP call is an alerting state and the script can then specify that a multi-party conference is to be created, an announcement played to the UE (using VoiceXML), then the UE is joined to the conference; for example,
<ccxml version="1.0" xmlns="http://www.w3.org/2002/09/ccxml">

<scxml xmlns=”http://www.w3.org/2005/07/scxml” xmlns:cc=”http://www.example.com/mrfc-profile/10/callcontrol” xmlns:mc=”http://www.example.com/mrfc-profile/10/conferencecontrol” version="1.0" initialstate="idle">

<datamodel>
<data name="connection" expr="''"/>

</datamodel>

<state id="idle">

 <transition event="cc:connection.alerting" target="CreateConference">

 <assign location="/data[@name='connection']"

 expr="_eventdata.connectionid"/>

 </transition>

</state>
<state id="CreateConference">

 <onentry> <mc:createconference id="conf1" /> </onentry>

 <transition event="cc:conference.created" target="callConnecting">

 <cc:accept/>

 </transition>

</state>

<state id="callConnecting">

 <transition event="connection.connected" target="playDialog"/>

</state>

<state id="playDialog">

 <invoke src="'http://vxmlserver.example.net/welcome.vxml'"

 targettype="application/voicexml+xml"/>

 <transition event="dialog.exit" target="inconference">

 <mc:join id1="connection" id2="conf1"/>

 </transition>

</state>

</scxml>
6.2.4
Explanation of Mp interface

6.2.4.1
Introduction
6.2.4.2
Main Characteristics

6.2.4.3
Example

3GPP

_1232457374.vsd
MRFC

SIP
AS

S-CSCF

Sr

HTTP

Mp

Mr

SIP

ISC

SIP

H.248

HTTP Server

_1232457744.vsd
MRFC

SIP
AS

S-CSCF

Sr

HTTP

Mp

Mr

SIP

ISC

SIP

H.248

HTTP
Server

Control
AS

TCP

Cr

_1232457623.vsd
MRFC

SIP
AS

S-CSCF

TCP/SCTP

Mp

Mr

SIP

ISC

SIP

H.248

Control/HTTP
AS

HTTP

Cr

_1213702955.vsd
MRFC

AS

S-CSCF

Sr

HTTP

Mp

Mr

SIP

ISC

SIP

H.248

