3GPP TSG CT WG1 Meeting #127bis-e

C1-210213
Electronic meeting, 25-29 January 2021

Source:
Huawei, HiSilicon
Title:
Discussion on KAF desynchronization for AKMA
Agenda item:
17.2.6
Document for:
Discussion and Decision
1. Introduction

Under Rel-17 AKMA WID, SA3 TS 33.535 has specified stage 2 requirements on KAKMA and A-KID derivation and KAF derivation at the UE and the network sides.

Under Rel-17 AKMA WID, CT1 TS 24.501 has implemented stage 3 protocol design on KAKMA and A-KID derivation at the UE NAS layer.
This paper attempts to discuss KAKMA and A-KID derivation and KAF derivation at the UE and the network sides, to identify a KAF desynchronization problem between the UE and the network, to evaluate the possible solutions and finally to propose a way to resolve it.
2. Discussion
2.1 Derivation of KAKMA and A-KID
About when to derive KAKMA and A-KID at the UE, as per specified in SA3 TS 33.535 as below yellow text:

"3)
If the AUSF receives the AKMA indication from the UDM, the AUSF shall store the KAUSF and generate the AKMA Anchor Key (KAKMA) and the A-KID from KAUSF after the primary authentication procedure is successfully completed.

The UE shall generate the AKMA Anchor Key (KAKMA) and the A-KID from the KAUSF before initiating communication with an AKMA Application Function. "

Similaryly, about when to derive KAKMA and A-KID at the UE, as per specified in TS 24.501 as below yellow text:
"Upon receiving a request from upper layers to obtain AKMA Anchor Key (KAKMA) and AKMA Key Identifier (A-KID), the UE shall derive the KAKMA and the AKMA Temporary Identifier (A-TID) from the KAUSF if available as specified in 3GPP TS 33.535 [24A], shall further derive the A-KID from the A-TID as specified in 3GPP TS 33.535 [24A] and shall provide KAKMA and A-KID to the upper layers."

The above yellow text in both SA3 and CT1 indicates that the derivation of KAKMA and A-KID at the UE is only based on upper layers request and somehow decoupled from the NAS AKA procedure, i.e. after the successful completion of an NAS AKA procedure with a new KAUSF generated, the UE needs not to derive KAKMA and A-KID.
Observation #1. The derivation of KAKMA and A-KID at the UE is triggered by upper layers request which is decoupled from the NAS AKA procedure, i.e. even a new KAUSF was generated, no need to derive the new KAKMA and A-KID.

About when to derive KAKMA and A-KID at the network, as per specified in SA3 TS 33.535 as below green text:

"3)
If the AUSF receives the AKMA indication from the UDM, the AUSF shall store the KAUSF and generate the AKMA Anchor Key (KAKMA) and the A-KID from KAUSF after the primary authentication procedure is successfully completed.

…
4)
After AKMA key material is generated, the AUSF shall send the generated A-KID, and KAKMA to the AAnF together with the SUPI of the UE using the Naanf_AKMA_KeyRegistration Request service operation. The AAnF shall store the latest information sent by the AUSF.

NOTE 1:
The AUSF need not store any AKMA key material after delivery to the AAnF.

NOTE 1a: When re-authentication runs, the AUSF generates a new A-KID, and a new KAKMA and sends the new generated A-KID and KAKMA to the AAnF. After receiving the new generated A-KID and KAKMA, the AAnF deletes the old A-KID and KAKMA and stores the new generated A-KID and KAKMA."

One can see at the network side, after the successful completion of an NAS AKA procedure with a new KAUSF generated, the AUSF shall generate KAKMA and A-KID based on the new KAUSF.

Furthermore, based on above pink text, after the derivation of KAKMA and A-KID, the AUSF shall send them to the AAnF for storage while AUSF itself will not store them after derivation. The storage of KAKMA and A-KID at the AAnF is for KAF derivation as per request from AKMA AF. All these clearly indicate that whenever there is a successful NAS AKA procedure (including re-AKA) with a new KAUSF generated, there will be a new KAKMA and A-KID stored at the AAnF for KAF derivation. That is to say, whatever stored at the AAnF is the up-to-date key materials used for AKMA, i.e. derived from the latest KAUSF.
Observation #2. The derivation of KAKMA and A-KID at the AUSF happens after each successful NAS AKA procedure, i.e. whenever a new KAUSF was generated, the stored key materials at the AAnF are updated.

Based on observation#1 and #2, one can see the time to derive KAKMA and A-KID are different between the UE and the network.

2.2 Derivation of KAF
The derived KAKMA and A-KID at the UE and the network are finally used to derive the KAF used over Ua* protocol for AKMA. As per specififed in TS 33.535, KAF is a key derived by ME and AAnF from the same KAKMA. AKMA AF obtains the KAF from AAnF.
About when to derive KAF at the UE, as per specified in SA3 TS 33.535 as below yellow text:

"Before communication between the UE and the AKMA AF can start, the UE and the AKMA AF needs to know whether to use AKMA. This knowledge is implicit to the specific application on the UE and the AKMA AF or indicated by the AKMA AF to the UE (see clause 6.5).

1.
The UE shall generate the AKMA Anchor Key (KAKMA) and the A-KID from the KAUSF before initiating communication with an AKMA Application Function. When the UE initiates communication with the AKMA AF, it shall include the derived A-KID (see clause 6.1) in the Application Session Establishment Request message. UE may derive KAF before sending the message or afterwards."

One can see before communicating with AKMA AF, the UE shall generate KAKMA and A-KID, which means the UE upper layers need to request the UE NAS layer to obtain KAKMA and A-KID. However, after received KAKMA and A-KID provided by the UE NAS, the UE upper layers may or may not to derive the KAF. If the UE upper layers defer the KAF derivation later, i.e. does not derive KAF when receiving the KAKMA and A-KID from NAS, e.g. defer to the time when application using AKMA is started, then the UE upper layers need to store the received KAKMA and A-KID from NAS for later KAF derivation. Hereafter when the UE upper layers need to derive KAF, it can directly use the stored KAKMA without NAS involvement.
Observation #3. The derivation of KAF at the UE can happen after receiving KAKMA and A-KID from NAS, i.e. the UE upper layers can derive KAF from the stored KAKMA without NAS involvement.
About when to derive KAF at the network, as per specified in SA3 TS 33.535 as below green text:

"2.
If the AF does not have an active context associated with the A-KID, then the AF sends a Naanf_AKMA_ApplicationKey_Get request to AAnF with the A-KID to request the KAF for the UE. The AF also includes its identity (AF_ID) in the request.

…
3.
The AAnF derives the AKMA Application Key (KAF) from KAKMA if it does not already have KAF.

The key derivation of KAF shall be performed as specified in Annex A.4.

4.
The AAnF sends Naanf_AKMA_ApplicationKey_Get response to the AF with KAF and the KAF expiration time."

One can see when the AKMA AF received the application session establishement request from the UE over Ua* interface, if the AKMA AF has no KAF, it shall request the AAnF to obtain KAF. The AAnF derives KAF based on the stored KAKMA and A-KID (which were always derived from the latest KAUSF). That is to say, the derived KAF at the network side is always from the latest KAKMA and A-KID which derived from the latest KAUSF.
Observation #4. The derivation of KAF at the network is always from the latest KAKMA which derived from the latest KAUSF.
Based on observation#3 and #4, one can see the ways to derive KAF are little different between the UE and the network.

Finally, SA3 further defined KAF re-keying/refresh as below:
"6.4.2
KAF re-keying

The KAF re-keying depends on the lifetime of the KAF and may be trigged by the AF, which means that when a new KAKMA is derived, the KAF will not be re-keyed automatically.

When the lifetime of KAF expires, the AF may reject UE’s access to the AF or refresh the KAF as description in clause 6.4.3 based on its policy. If there has been a change of KAUSF (e.g., due to a successful run of primary authentication), the UE may re-try accessing the AF by using the A-KID derived from the new KAUSF .
6.4.3
KAF refresh

Ua* protocol may support refresh of KAF. If the Ua* protocol supports refresh of KAF, the AF may refresh the KAF at any time using the Ua* protocol."

Observation #5. The KAF re-keying is controlled by the lifetime of KAF and the AKMA AF can refresh the KAF to the UE at any time using the Ua* protocol.
2.3 Problem
Based on observations in section 2.1 and 2.2, due to the different handling on KAKMA and A-KID derivation and KAF derivation at the UE and the network, it could happen that the derived KAKMA used for KAF derivation are de-synchronized between the UE and the network, which finally causes the KAF desynchronization between the UE and the network (see below Figure 1 and Figure 2).
The typical scenario for Figure 1 is: The UE needs to start two APPs using AKMA served by different AKMA AFs. Between the start of these two APPs, the network initiated a new NAS AKA procedure which updated the KAUSF at the UE and the network.

[image: image1.emf]UEAUSFAAnF1. The 1st round of AKA procedure successfully completed with KAUSF#1AF#1 4. UE upper layers request NAS to obtain KAKMA and A-KID and UE NAS derives (KAKMA and A-KID)#1 from KAUSF#1 and sent to upper layers for storage7b. AUSF derives (KAKMA and A-KID)#2 from KAUSF#2 and sent them to AAnF for storage, AAnF replaces (KAKMA and A-KID)#1 with (KAKMA and A-KID)#23. UE attempts to start an APP#1 served by AF#1 (with AF_ID#1) which uses AKMA6. The 2nd round of AKA procedure successfully completed with KAUSF#2AF#22a. UE NAS stores KAUSF#1 without deriving (KAKMA and A-KID)#1 from KAUSF#15a. For APP#1, UE upper layers derive KAF#1 from the current stored KAKMA#1 and serving AF ID AF_ID#15b. AF#1 requests AAnF to obtain KAF, AAnF derives KAF#1 from the current stored KAKMA#1 and AF_ID#1 and sends it to AF#17a. UE NAS stores KAUSF#2 without deriving (KAKMA and A-KID)#2 from KAUSF#28. UE attempts to start an APP#2 served by AF#2 (with AF_ID#2) which uses AKMA9a. For APP#2, UE upper layers derive KAF#2 from current stored KAKMA#1 and serving AF ID AF_ID#29b. AF#2 requests AAnF to obtain KAF, AAnF derives KAF#2 from KAKMA#2 and AF_ID#2 and sends it to AF#22b. AUSF derives (KAKMA and A-KID)#1 from KAUSF#1 and sent them to AAnF for storageProblem: The derived KAF#2 between the UE and the network for APP#2 are different

Figure 1.
In above Figure 1, at step 9a, when the UE upper layers derives KAF for APP#2 served by AKMA AF#2, currently it is unspecified that the UE upper layers shall always request the UE NAS to obtain the KAKMA and A-KID when the stored KAKMA is still available at UE upper layers. Based on observation#3, reasonably, the UE upper layers can directly derive KAF from the stored KAKMA without NAS involvement, i.e. KAKMA #1.
Also, currently it is unspecified that when a new KAUSF was generated after a successful NAS AKA procedure, the UE NAS will actively inform UE upper layers that a new KAUSF was generated, i.e. the UE upper layers does not know the refresh of KAUSF at the UE NAS. With this, the below SA3 yellow text in TS 33.535 actually cannot work well in stage 3:

"When the lifetime of KAF expires, the AF may reject UE’s access to the AF or refresh the KAF as description in clause 6.4.3 based on its policy. If there has been a change of KAUSF (e.g., due to a successful run of primary authentication), the UE may re-try accessing the AF by using the A-KID derived from the new KAUSF."

But at the network side, at step 9b, when the AKMA AF#2 requests AAnF to obtain KAF, AAnF derives KAF#2 from KAKMA#2 and AF_ID#2 and sends it to AF#2, in which KAKMA#2 was derived from the latest KAUSF#2. All these caused the problme that the derived KAF#2 between the UE and the network for APP#2 are different.
The typical scenario for Figure 2 is: The AKMA AF needs to refresh the used KAF at the lifetime of the KAF expires. Step 1-7 are actually very similar as Figure 1.

[image: image2.emf]UEAUSFAAnF1. The 1st round of AKA procedure successfully completed with KAUSF#1AF#13. UE attempts to start an APP served by AF#1 (with AF_ID#1) which uses AKMA2a. UE NAS stores KAUSF#1 without deriving (KAKMA and A-KID)#1 from KAUSF#12b. AUSF derives (KAKMA and A-KID)#1 from KAUSF#1 and sent them to AAnF for storage4. UE upper layers request NAS to obtain KAKMA and A-KID and UE NAS derives (KAKMA and A-KID)#1 from KAUSF#1 and sent to upper layers for storage6. The 2nd round of AKA procedure successfully completed with KAUSF#25a. UE upper layers derive KAF#1 from the current stored KAKMA#1 and serving AF ID AF_ID#15b. AF#1 requests AAnF to obtain KAF, AAnF derives KAF#1 from the current stored KAKMA#1 and AF_ID#1 and sends it to AF#17b. AUSF derives (KAKMA and A-KID)#2 from KAUSF#2 and sent them to AAnF for storage, AAnF replaces (KAKMA and A-KID)#1 with (KAKMA and A-KID)#27a. UE NAS stores KAUSF#2 without deriving (KAKMA and A-KID)#2 from KAUSF#28. At the lifetime of the KAF#1 expires, AF#1 refreshes the KAF using the Ua* protocol (see TS 33.535 sub 6.4.3)9a. UE upper layers derive a new KAF#2 from current stored KAKMA#1 and serving AF ID AF_ID#19b. AF#1 requests AAnF to obtain KAF, AAnF derives a new KAF#2 from the current stored KAKMA#2 and AF_ID#1 and sends it to AF#1Problem: The derived new KAF#2 between the UE and the network are different

Figure 2.
Due to the same reasons in Figure1, it caused the same problem in Figure 2 that the derived new KAF#2 between the UE and the network are different.

Problem: The KAF desynchronization between the UE and the network happens after the KAUSF was updated due to a new NAS AKA procedure.

2.4 Solutions
To resolve the problem in secton 2.3, following alternative solutions can be considered:

Solution #1: Whenever the UE upper layers need to generate the KAF for AKMA, the UE upper layers request the UE NAS to obtain the KAKMA and A-KID, i.e. the UE upper layers never use KAKMA stored at the upper layers for KAF generation.
Solution #2: Similar as network done, after a new KAUSF is updated due to a successful NAS AKA procedure, the UE NAS actively derives the new KAKMA and A-KID based on the updated KAUSF and then provides them to UE upper layers for storage.
Solution #3: After a new KAUSF is updated due to a successful NAS AKA procedure, the UE NAS actively indicates the UE upper layers that the KAUSF is updated and then the UE upper layers based on this indication to request the UE NAS to obtain the new KAKMA and A-KID when later it needs to generate KAF for AKMA.

The evaluation on these solutions is show in Table 1.
Table 1. Solutions evaluation

	Solutions
	Pros.
	Cons.

	Solution #1
	· The UE NAS needs not to derive KAKMA and A-KID from KAUSF without upper layers request.

· Both the UE NAS and the upper layers need not to store the derived KAKMA and A-KID, it is always "request it, derive it and use it", that is all.
· No impact UE NAS.
	· Per each KAF derivation (e.g. for the same or different AKMA APPs), the UE upper layers need to request UE NAS to obtain KAKMA and A-KID even though KAUSF is not changed, which increases UE internal interactions.

	Solution #2
	· The consistent handling on KAKMA and A-KID derivation between the UE and the network.
· KAKMA and A-KID stored at the UE upper layers are always the latest ones, i.e. the UE upper layers need not to request the UE NAS to obtain KAKMA and A-KID, which reduces UE internal interactions.
	· The UE NAS is enforced to always derive KAKMA and A-KID whenever KAUSF is changed regardless of UE upper layers use it or not (e.g. the UE upper layers need not to use KAMA for long time).

· The existing handling of UE upper layers on KAKMA and A-KID derivation are totally changed, i.e. the UE upper layers need not to request the UE NAS to obtain KAKMA and A-KID.
· Both UE upper layers and NAS are impacted.

	Solution #3
	· The UE NAS needs not to derive KAKMA and A-KID from KAUSF without upper layers request.

· KAKMA and A-KID stored at the UE upper layers can be updated based on new NAS indication, i.e. without this new NAS indication, the UE upper layers can directly derive the KAF from the stored KAKMA which slightly reduces UE internal interactions.
	· The UE NAS is enforced to indicate upper layers whenever KAUSF is changed, which is a new indication added for UE internal interactions.

· UE upper layers are enforced to store this new indication for later KAF derivation.

· Both UE upper layers and NAS are impacted.

Based on the solutions evaluaiton given in above Table 1, one can see Solution #1 is better than Solution #2, which is further better than Solution #3.
Proposal: It proposes to adopt Solution #1 to resolve the KAF desynchronization issue.

3 Conclusion
This paper has discussed KAKMA and A-KID derivation and KAF derivation at the UE and the network sides.

For KAKMA and A-KID derivation, following observations were provided:
Observation #1. The derivation of KAKMA and A-KID at the UE is triggered by upper layers request which is decoupled from the NAS AKA procedure, i.e. even a new KAUSF was generated, no need to derive the new KAKMA and A-KID.

Observation #2. The derivation of KAKMA and A-KID at the AUSF happens after each successful NAS AKA procedure, i.e. whenever a new KAUSF was generated, the stored key materials at the AAnF are updated.

For KAF derivation, following observations were provided:
Observation #3. The derivation of KAF at the UE can happen after receiving KAKMA and A-KID from NAS, i.e. the UE upper layers can derive KAF from the stored KAKMA without NAS involvement.
Observation #4. The derivation of KAF at the network is always from the latest KAKMA which derived from the latest KAUSF.
Observation #5. The KAF re-keying is controlled by the lifetime of KAF and the AKMA AF can refresh the KAF to the UE at any time using the Ua* protocol.
Based on above observations, the below problem was identified:

Problem: The KAF desynchronization between the UE and the network happens after the KAUSF was updated due to a new NAS AKA procedure.

To resolve above problem, follow solutions were discussed and evaluated:

Solution #1: Whenever the UE upper layers need to generate the KAF for AKMA, the UE upper layers request the UE NAS to obtain the KAKMA and A-KID, i.e. the UE upper layers never use KAKMA stored at the upper layers for KAF generation.

Solution #2: Similar as network done, after a new KAUSF is updated due to a successful NAS AKA procedure, the UE NAS actively derives the new KAKMA and A-KID based on the updated KAUSF and then provides them to UE upper layers for storage.

Solution #3: After a new KAUSF is updated due to a successful NAS AKA procedure, the UE NAS actively indicates the UE upper layers that the KAUSF is updated and then the UE upper layers based on this indication to request the UE NAS to obtain the new KAKMA and A-KID when later it needs to generate KAF for AKMA.

Based on solutions evaluaiton, below proposal was provided:

Proposal: It proposes to adopt Solution #1 to resolve the KAF desynchronization issue.

The above proposal was captured in the CR C1-210214.
UE
AUSF
AAnF
1. The 1st round of AKA procedure successfully completed with KAUSF#1
AF#1
4. UE upper layers request NAS to obtain KAKMA and A-KID and UE NAS derives (KAKMA and A-KID)#1 from KAUSF#1 and sent to upper layers for storage
7b. AUSF derives (KAKMA and A-KID)#2 from KAUSF#2 and sent them to AAnF for storage, AAnF replaces (KAKMA and A-KID)#1 with (KAKMA and A-KID)#2
3. UE attempts to start an APP#1 served by AF#1 (with AF_ID#1) which uses AKMA
6. The 2nd round of AKA procedure successfully completed with KAUSF#2
AF#2
2a. UE NAS stores KAUSF#1 without deriving (KAKMA and A-KID)#1 from KAUSF#1
5a. For APP#1, UE upper layers derive KAF#1 from the current stored KAKMA#1 and serving AF ID AF_ID#1
5b. AF#1 requests AAnF to obtain KAF, AAnF derives KAF#1 from the current stored KAKMA#1 and AF_ID#1 and sends it to AF#1
7a. UE NAS stores KAUSF#2 without deriving (KAKMA and A-KID)#2 from KAUSF#2
8. UE attempts to start an APP#2 served by AF#2 (with AF_ID#2) which uses AKMA
9a. For APP#2, UE upper layers derive KAF#2 from current stored KAKMA#1 and serving AF ID AF_ID#2
9b. AF#2 requests AAnF to obtain KAF, AAnF derives KAF#2 from KAKMA#2 and AF_ID#2 and sends it to AF#2
2b. AUSF derives (KAKMA and A-KID)#1 from KAUSF#1 and sent them to AAnF for storage
Problem: The derived KAF#2 between the UE and the network for APP#2 are different

UE
AUSF
AAnF
1. The 1st round of AKA procedure successfully completed with KAUSF#1
AF#1
3. UE attempts to start an APP served by AF#1 (with AF_ID#1) which uses AKMA
2a. UE NAS stores KAUSF#1 without deriving (KAKMA and A-KID)#1 from KAUSF#1
2b. AUSF derives (KAKMA and A-KID)#1 from KAUSF#1 and sent them to AAnF for storage
4. UE upper layers request NAS to obtain KAKMA and A-KID and UE NAS derives (KAKMA and A-KID)#1 from KAUSF#1 and sent to upper layers for storage
6. The 2nd round of AKA procedure successfully completed with KAUSF#2
5a. UE upper layers derive KAF#1 from the current stored KAKMA#1 and serving AF ID AF_ID#1
5b. AF#1 requests AAnF to obtain KAF, AAnF derives KAF#1 from the current stored KAKMA#1 and AF_ID#1 and sends it to AF#1
7b. AUSF derives (KAKMA and A-KID)#2 from KAUSF#2 and sent them to AAnF for storage, AAnF replaces (KAKMA and A-KID)#1 with (KAKMA and A-KID)#2
7a. UE NAS stores KAUSF#2 without deriving (KAKMA and A-KID)#2 from KAUSF#2
8. At the lifetime of the KAF#1 expires, AF#1 refreshes the KAF using the Ua* protocol (see TS 33.535 sub 6.4.3)
9a. UE upper layers derive a new KAF#2 from current stored KAKMA#1 and serving AF ID AF_ID#1
9b. AF#1 requests AAnF to obtain KAF, AAnF derives a new KAF#2 from the current stored KAKMA#2 and AF_ID#1 and sends it to AF#1
Problem: The derived new KAF#2 between the UE and the network are different

