3GPP TSG CT WG1 Meeting #127bis-e




C1-210191
Electronic meeting, 25-29 January 2021
Source:
Samsung, AT&T, Convida Wireless, Deutsche Telekom, Ericsson, Intel, KDDI, Korea Telecom, SK Telecom, Softil, Qualcomm Incorporated
Title:
Discussion on EDGE-1 and EDGE-4 API Selection way forward
Agenda item:
17.2.10
Document for:
Endorsement
1.
Introduction

SA6 is specifying the application layer architecture, procedures and information flows necessary for enabling edge applications (EDGEAPP) over 3GPP networks in 3GPP Rel-17 TS 23.558 [1]. As per the application architecture defined in TS 23.558, there exists a reference point (EDGE-1) between Edge Enabler Server (EES) and Edge Enabler Client (EEC), and a reference point (EDGE-4) between Edge configuration Server (ECS) and Edge Enabler Client. 

This paper attempts to describe possible implementation options for EDGE-1 and EDGE-4 reference points.
2.
Implementation options

The APIs for EDGE-1 and EDGE-4 reference points are specified in clause 8.3.4, clause 8.4.2.4 and clause 8.5.4 of 3GPP TS 23.558 [1]. And in C1-207064 (S6-202009), SA6 informed CT1 about their decision that the reference points EDGE-1 and EDGE-4 shall be exposed as APIs.

	SA6 would like to inform CT1 and CT3 that SA6 has decided that the reference points from the network entities of the EDGEAPP architecture, i.e. Edge Enabler Server (EES) and the Edge Configuration Server (ECS), towards the Edge Enabler Client (UE entity of the EDGEAPP architecture) as specified in TS 23.558, shall be exposed as APIs.


SA6 has made the architectural decision that reference points from the EES and ECS to the EEC shall be exposed as APIs. Thus, CT1 needs to decide the type of APIs and the data serialization format for the APIs over EDGE-1 and EDGE-4 reference points suitable for enabling edge applications.

2.1
Type of APIs

We have following two possible options for APIs.

Option# A) RESTful APIs
REST (Representational State Transfer) is a set of architectural principles which are being followed by application developer to define easy to use APIs. In REST a client and a server communicate via request/response interactions. The request/response carry the representation of a resource which is identified by a URL. REST requires creation of an object of the data requested by the client and send the values of the object in response to the user. REST is commonly used in conjunction with HTTP. The common set of HTTP verbs (POST, GET, PUT & DELETE) are used to pass on the typical CRUD (Create, Read, Update, Delete) operations from the client to the server which is hosting the targeted resource (as identified by the URL in the request). The characteristics of REST have been studied and documented in clause 6.2.2.4.2 of TR 29.891 [2]. RESTful APIs have been very successful with application developers out in the industry. Benefits and drawbacks of the RESTful APIs are listed below:

Benefits of using RESTful APIs:

· With a small number of operations, REST can handle numerous resources, which makes it simple to build and adapt
· It is scalable – due to the “Client-Server” principle where client and server are isolated from one another and developed independently

· Stateless principle allows the isolation of HTTP requests. If there’s an error in one request, it doesn’t impact the rest of the functionality. It also allows to scale by adding additional server nodes behind a load balancer.

· Provides uniform interface of interacting with a given server irrespective of device or type of application.

· It is layered - You can put several layers of components between client and server, for routing purposes, load balancing or cacheing – making it flexible.
· OpenAPI 3.0.0 Specification supports REST APIs which allows to describe APIs in YAML format.
Drawbacks of RESTful APIs:
· Do not maintain state within sessions

Option# B) RPC APIs

In Remote Procedure Calls (RPC), a client entity invokes a certain functionality on a server entity over a network protocol. It enables communication between two distributed components (mostly) owned by same provider. They typically use the HTTP request-response protocol. RPC is generally characterized as a single URI on which many operations may be called, usually via POST. Usually, in a request, structured data is passed including required parameters; the response will also be in a structured format. Examples include XML-RPC and SOAP.
The characteristics of RPC APIs have been studied and documented in clause 6.2.2.4.1 of TR 29.891 [2]. Benefits and drawbacks of the RPC APIs are listed below:

Benefits of RPC APIs:

· Simple, easy to understand

· Provides fine gained control that means you can represent multiple level of operation you need
Drawbacks of RPC APIs:

· Lack of HTTP caching, inability to use native HTTP verbs for common operations;
· Number of available resources cannot be determined using URIs;

· Do not use HTTP to its full capabilities
· Many different operations/methods as opposed to a standard set of small HTTP verbs (POST, GET, PUT & DELETE)
2.2 Data serialization format

This paper discusses the following two popular data serialization formats used for APIs. 
Option# C) JSON

JSON is a lightweight text-based format which is ideal for data exchange, specified in IETF RFC 7159 [3]. Usage of JSON for APIs have been studied and documented in clause 6.2.2.5.1 of TR 29.891 [2]. Benefits and drawbacks of the JSON are listed below:

Benefits of using JSON:

· Simple and straightforward to use; 

· Faster to read and write;
· No tag format, less verbose;
· Relatively shorter and lightweight than XML, Parses faster than XML;
· Enormous tools available for the development (programming language support for code generation to encode/decode documents) and for an application specification (with IDL frameworks such as OpenAPI targeting primarily JSON as data format).

Drawback of using JSON:

· Do not have robust data structure – i.e. no ability to add comments or attribute tags
· No namespace support

Option# D) XML

XML stands for eXtensible Markup Language, designed to store and transport data, and also designed to be self-descriptive. Benefits and drawbacks of the XML are listed below:
Benefits of using XML:

· Namespaces allow partitioning of data

· It is extendable - allows you to create your own tags or use the tags created by other users.

· It has self-documenting formats – that is XML data formats describe its structure, field names, and the specific values for each data stored
Drawback of using XML:

· Much more difficult to parse than JSON.

· XML syntax is verbose and redundant - causes higher storage and transportation cost when the volume of data is large, also requires more processor power.
· The verbose nature of the data structure leads to the creation of a very large XML file size. This large data size can be an issue for some application
· Less human readable compared to JSON

· It doesn’t support array

3.
Proposal

Proposal 1): Use REST APIs to develop EDGE-1 and EDGE-4 reference points with corresponding representations of APIs in YAML format.
· As mentioned in clause 2.2 (Option# A)), it is evident that the REST architectural style offers remarkable benefits, and that's why its acceptance in the design of web systems has grown exponentially in the last years.

· As discussed in SA6 (TDoc: S6-201964), in EDGEAPP, the functional entities like ECS, EES and EEC will be provided by different vendors. Given the involvement of multiple and possibly unrelated developers, development of these functional entities cannot be tightly coordinated. Furthermore, as described in TS 23.558 [1], an EEC may communicate with multiple EES(s) and multiple ECS(s), each of which may be provided by different vendors.

· As discussed in option# A), REST APIs allows client and server to be isolated from each other.

· With usage of REST, APIs for EDGE-1 and EDGE-4 reference points will be aligned with APIs for EDGE-3, EDGE-6 and EDGE-9 reference points which will be implemented in CT3 WG.

Considering above points, the authors of this paper propose to select REST APIs for the development of EDGE-1 and EDGE-4 interfaces.
Proposal 2): Use JSON data serialization format for EDGE-1 and EDGE-4 reference points.
· JSON is the most widespread format, especially in the area of HTTP web services

· JSON is simple to use and lightweight

· With usage of JSON, APIs for EDGE-1 and EDGE-4 reference points will be aligned with APIs for EDGE-2, EDGE-7 and EDGE-8 reference points which will be implemented in CT3 WG.

· On other hand XML may require higher storage and transportation cost, also require higher processing power

Considering above points, the authors of this paper propose to select JSON as data serialization format for the development of EDGE-1 and EDGE-4 interfaces.
Also, it is to be noted that CT3 and CT4 analysed different options for SBI APIs and considering the benefits of RESTful framework for the API design and usage of HTTP/JSON for service based interfaces, CT3 and CT4 shared their conclusion in LS CP-172074. Based on the discussion in this paper, similar conclusions are applicable to EDGEAPP as well. Above proposals 1) and 2) are aligned to CT3 and CT4 conclusions.

Additionally, it is to be noted that 3GPP has already specified RESTful APIs with JSON data serialization format between UE and 5G media streaming server in 3GPP TS 26.512 [4] in SA4 WG.

4.
Conclusion

Given the proven benefits, REST APIs with JSON as data serialization format shall be used for EDGE-1 and EDGE-4 API implementation. The authors of this paper kindly request CT1 to endorse above proposals 1) and 2).
References

[1]
3GPP TS 23.558: "Architecture for enabling Edge Applications". 

[2]
3GPP TS 29.891: "5G System – Phase 1; CT WG4 Aspects".
[3]
IETF RFC 7159: "The JavaScript Object Notation (JSON) Data Interchange Format".

[4]
3GPP TS 26.512: "5G Media Streaming (5GMS); Protocols".
