3GPP TSG CT WG1 Meeting #114

C1-190121
Bratislava, Slovakia, 21-25 January 2019
Source:
Intel
Title:
On the use of 5QI as access category criteria type
Agenda item:
15.2.2.7
Document for:
Decision
1. Introduction

For several meetings, CT1 has discussed whether 5QI is a suitable criteria type for the definition of operator defined access categories.
At the last meeting, the supporters of 5QI presented a new use case (see [1]), arguing that an operator may want to offer specific "operator services" via the internet APN and may want to be able to apply access barring with different barring parameters for access attempts related to such an operator service and access attempts related to an internet service. According to the approach suggested in [1], during establishment of the internet PDU session the UE can be provided with packet filters for a specific QoS flow with operator specific 5QI, and additionally with an operator defined access category definition for this specific 5QI. In this way it would actually possible to perform access barring dependent on any combination of packet filters.
In the present paper we will take a closer look at the use case and the assumptions made in [1]. And we will also analyse whether the proposed mechanism can really provide an effective access control mechanism for the network. Additionally we will compare the proposed mechanism with other mechanisms bases on using the OS App Id or the DNN as access category criteria type.
2. Discussion
2.1
Purpose of access control
Access control – or access barring – has existed in GSM and 3GPP mobile communication systems since the early days of GSM phase 1 and has evolved in many steps since then. Originally the idea was to have a means to protect the random access channel (RACH), a common resource used by all UEs to get access to the network, from overload. But over time the scope was broadened and protection of the whole RAN and the connected core network(s) was added.
Moreover, the concept of an access attempt was refined: Access attempts are now differentiated according to the purpose (e.g. registration, paging response, use of a service, emergency), and generally an access attempt can also be subject to access control if the UE is already in Connected mode, i.e. when the first hurdle, the random access, has been passed successfully. For example any attempt by the UE to initiate a signalling sequence to establish an IMS MMTel call is considered now as an access attempt.
In the 5GS, where user plane bearers can be requested by the UE and established by the network with the granularity of a PDU session, a request to (re-)establish the user plane bearers for an already existing PDU session is considered an access attempt which has to pass access barring checks, even if the UE is already in Connected mode at the time when the request is detected.

An overload can occur for various reasons, e.g. due to an event like a sports event or an open-air festival, due to an outage of network resources, or due to a disaster situation. In all these situations it is essential that the network has a reliable and effective means to stop access attempts already at the source, i.e. inside the UE, before they are using any network resources.
2.2
Use of 5QI as access category criteria type
As already briefly described in the introduction, the mechanism proposed in [1] is based on 2 components: a packet filter defining the mapping to a specific 5QI value, and an operator defined access category using this 5QI value as criterion.

It is assumed that when the application for the operator service on the UE starts sending user data packets to the operator's application server (AS) in the network, the first packet generated by the application will match the packet filter and therefore be mapped to the dedicated QoS flow with the specific 5QI value.

When an entity (e.g. QoS flow control/"RAB manager") in the user plane of the modem detects that the packet cannot be transmitted, because the user plane bearers for the PDU session are not established or are suspended, then it will inform the 5GMM entity in the control plane that it has user data for PDU session X with 5QI = Y pending, and 5GMM will determine the access category for this event – which is the operator defined access category referring to 5QI = Y. 5GMM will then perform access barring checks for this access category, and if the checks are passed, 5GMM will initiate the necessary service request or resume procedure to get the user plane bearers established.
If an internet application starts sending user data packets, the first packet generated by the application will not match the packet filter; therefore, the packet will be mapped to the default QoS flow with some default 5QI value. As a consequence the access attempt will be mapped to the access category for "MO data", and for the access barring checks the UE will apply the barring parameters for that access category.
In an overload situation it is expected that the broadcasted barring parameters for the operator defined access category are less restrictive than those for the access category "MO data". So it is more likely that the UE will pass the access barring checks when the packet was mapped to the dedicated QoS flow with 5QI = Y than when the packet was mapped to the default QoS flow.
It is not mentioned in [1], but we expect that typically the packet filter for the operator service(s) will include the IP address or IP address range for the operator's application server(s) and possibly a port number (or a port number range).

2.3
Analysis of the proposal in [1]

In the following analysis we will focus on 2 points: whether the mechanism is reliable and effective and whether it is indeed working as assumed by the proponents of [1].

2.3.1
Reliability / effectiveness of the proposal

At first glance the proposal seems to achieve what is required: access attempts for the purpose of using an operator service can receive a 'better' acceptance rate than access attempts for an internet service, although both access attempts are using the same PDU session. I.e. it seems that in an overload situation the operator can effectively bar the user from getting any internet services, while access to the operator services is still possible.
However this simple view is only valid as long as we do not take the user behaviour into account, because once the user plane bearers have been established, any application associated with the same PDU session can start sending uplink user data packets, without having to pass access control. This is also known as the 'free ride' problem. It means if the application for the operator service has a 'valid ticket' to access the network, the internet application can access as well, without having to 'buy any ticket'.
In our view this is a serious flaw of the whole mechanism, because we should never assume that users are stupid and will not find out how to overcome access control in this situation.

Especially not, if the work-around is as easy as in the present case: typical use cases that were given for the operator services are XCAP (used for the configuration of IMS supplementary services), MMS, RCS, or a disaster message board application. So it will be sufficient for the user to start any of these operator services to trick the UE into using the better access barring parameters for the barring check. As soon as the operator service is ongoing, the user can start the internet service without having to pass any access barring checks for that second service.
In addition to this 'basic' free ride scenario, there is a 2nd 'free ride' scenario, where the access control needs to be performed by the network side: Let us assume that the UE sends a Service Request to the network, because the user wants to set up an MMTel voice call and the UE has successfully passed the access barring checks for the respective access category. Now let us assume the UE also has user data for an internet service pending. So far the UE could not send those data, because it failed the barring check for the access category 'MO data'. Nevertheless, now with the same Service Request message the UE can send an UL data status IE indicating all PDU sessions for which it has user data pending. So for our case it will indicate data pending for both the IMS PDU session and the internet PDU session. When this behaviour was agreed by CT1, it was argued that it is still up to the network to decide whether to establish the user plane bearers for a certain PDU session. This is still correct, however the crux is that now, for this new use case, user data can be sent by applications of quite different 'priority' via the same PDU session, and the network does not have any information about the 'priority' of the pending data. This means the network has the choice to either err on one side and establish the user plane also for 'low priority' internet data or to err on the other side and deny the establishment also for a case when the UE has user data for a 'higher priority' operator service. (We will see in the next section that this issue is indeed different from the basic scenario, when we consider the same scenarios, but use the OS App Id as criteria type.)
Comparison with criteria types OS App Id and DNN

It has been argued that the access criterion OS App Id is suffering from the same 'free ride' issue, and therefore also the 5QI should be accepted as access criterion.
For the basic free ride scenario it is actually correct that it can occur also for OS App ID. Note, however, that for the 2nd scenario the issue does not exist, because if App ID is used as a criterion, then in our understanding, similar to an IMS client trying to setup an MMTel call, the App will be allowed to send user data only after it was informed by 5GMM that it passed the access barring check. So if internet applications are completely barred, they will not have a chance to create pending user data that would be indicated in the UL data status IE.
But let us take a closer look at the OS App ID. Originally, in Rel-12 the concept of OS App ID was introduced in the context of ANDSF as criterion for identifying traffic that could be offloaded to WLAN access or should be kept in 3GPP access (work item DIDA). We are not aware of any deployment of ANDSF with OS App ID in commercial networks.

The OS App ID was then adopted in Rel-13 as the only criterion for ACDC, and since ACDC is only applicable when the UE is in Idle mode, it also suffers from the free ride issue. But to our knowledge, the only case where ACDC is used in practice is for public safety related applications in South Korea where the regulator decided that ACDC should be used for access barring in this public safety context. In our understanding, for this use case the OS of the UE requires specific adaptations, because until today 'off-the-shelf' versions of OSes like Android or iOS do not support the interface to provide the OS App ID from the application processor (TE) to the modem (MT). Moreover, the related application(s) are not available to the public and cannot be installed by everyone on his UE. We assume this also the reason why operators are able to handle the software updates for these applications. (Public domain apps available via an official app store are usually assigned a new App ID with each version update. Some of these apps are updated quite frequently – more than once a month – and normally users cannot be forced to download and install the latest version of the app so that maintaining an 'up-to-date' mapping rule (encoded in an OMA MO), covering all versions that are currently in use, would be about as easy as herding cats.)
So in our view, the reason why the 'free ride' issue apparently does not play a role for the use case in South Korea is that the public safety application(s) are available only to a relatively small group of users who can be expected to make responsible use of the privileged access associated with these apps in a disaster situation.

The situation would be completely different if for example ACDC would be used to give privileged access for a disaster message board application that can be downloaded and installed by everyone.
Now, for the 5GS, we expect that the South Korean regulator will have similar requirements and will want to be able to use a similar mechanism to prioritize access for public safety users. So to us it looks difficult to discontinue the support of OS App ID for this specific use case. However, due to the 'free ride' issue we are sure that extending the use case for OS App ID to other operator services like XCAP, MMS or RCS would not be a good idea for any commercial network.
As the use case proposed in [1] is also aiming at operator services available to the broad majority of subscribers, we cannot assume that all these subscribers will behave in a responsible way. Therefore, we do not think that any criteria type suffering from the 'free ride' issue should be applied to this use case. And moreover, the support of OS App ID as criteria type should not be used as a precedence or argument to introduce yet another criteria type, 5QI, which would have the same negative consequences for the effectiveness of access control as OS App ID itself.
In our view the only way to avoid the 'free ride' issue for these specific operator services is using a separate, dedicated DNN for these services and using the DNN as criteria type. (Note that in Rel-13, DoCoMo actually proposed to use the APN as ACDC criterion to provide prioritized access for a disaster message board application. But this proposal was not accepted by CT1.)
Conclusion 1
In our view this 'free ride' issue should not be brushed aside as easily as it is done by the proponents of 5QI. Mobile communication systems are evolving and so is also the community of users of such systems and their behaviour. SA1 has already acknowledged this in the past by adapting the requirements, e.g. by mandating that SSAC for MMTel is also to be performed in Connected mode. Standardizing and implementing an access control mechanism that can be easily bypassed by any schoolchild is just a waste of money (especially if implementation of this mechanism is mandatory for UEs). Who would install an expensive safety lock on his front door and hang the key visible to everyone on a hook next to the door?
2.3.2
Technical correctness of the assumptions
The proposal in [1] is based on the assumption that the first packet generated by the application will match the packet filter and therefore be mapped to the dedicated QoS flow with the specific 5QI value. This is generally not correct.

When the user starts the application (see figure 1), the application will request lower layers to establish connectivity to an application server. The address of the application server is usually given to the application in the form of a "fully qualified domain name (FQDN)" which needs to be translated into an IP address before the application can send any user data to the server.
(Note: In theory, it would also be possible to provide the application with a hardcoded IP address for the server, but this has a number of disadvantages: The IP address would need to be known at compilation time, and it cannot be changed easily afterwards. Later software upgrades for the UE would also need to be made and distributed operator specifically. Operators would not be able to change the IP address of their application servers easily, and would not be able to use dynamic load distribution between several application servers. So generally the use of hardcoded IP addresses is not recommended.)
So as a first step (1) the application will ask a so-called resolver to translate the server name into an IP address. If the resolver does not have the mapping stored in its local cache, it will send a DNS query to the network to get the IP address from a DNS server (2). The DNS server address can be requested by the modem during the PDU session establishment via the signalling of PCOs or it can be received afterwards via DHCP. The resolver itself can also be considered as an application with IP connectivity to the DNS of the internet. So it will deliver the DNS Query via the IP protocol stack, and this DNS Query will indeed be the first user data packet received in the user plane of the modem for the internet PDU session (3). As the destination address of the IP packet is the IP address of the DNS server, it will not match the packet filter defined for the specific 5QI, and the modem will perform access barring checks based on a mapping to the access category for "MO data" (4). If the check is passed, the modem will send a Service Request to the network, asking the network to establish the user plane bearers for the internet PDU session. When the user plane bearers are available the DNS Query is delivered to the mobile network (5) and routed to the DNS server. The DNS Response is sent back to the UE (6) and delivered to the resolver (7) which provides the destination IP address to the application (8). Only now the application can ask the socket to provide IP connectivity via a UDP or TCP socket to the host (= application server) with a certain destination IP address and port number and deliver the first user data packet (9) that actually matches the packet filter for the specific 5QI. But at this point in time the user plane bearers for the internet PDU session are already established.
So for this case the access control is based on the access category for "MO data", not on the one for the specific 5QI. If the access barring check is failed, then the DNS Query cannot be sent, the FQDN cannot be resolved and the application never gets to the point of sending its first user data packet.

Note that it is not possible to avoid this problem by simply adding the IP address of the DNS server to the IP packet filters for the specific 5QI, because then also each DNS query by an internet application, e.g. by a web browser, would be mapped to the specific 5QI and would be handled based on the operator defined access category.

We have checked UE traces from different networks and verified that indeed before initiating an XCAP transaction the UE starts with a DNS Query to the network.
Now there are 2 cases where the above analysis does not apply:

-
case 1 is that the application already requested the connectivity at some point in the past, before the overload situation occurred, and it maintains the IP socket all the time so that further requests to the resolver are not required when the overload occurs;

-
case 2 is that the resolver has the mapping stored in its local cache so that it does not need to perform a DNS query.

Case 1
As far as we know, of the applications mentioned so far, only RCS is maintaining a signalling connection all the time. The other applications, e.g. XCAP or MMS, close the connection when a transaction is completed or when a certain time interval without user input has passed.
Apart from that, whether the behaviour of RCS is an advantage or disadvantage lies in the eye of the beholder: proponents of 5QI will say "you see – the DNS query issues does not apply for RCS", whereas opponents will point again to the 'free ride' issue and to the fact that when RCS is one of the operator services it is guaranteed that there is always a key hanging next to the locked door.
Case 2

Regarding the local cache of the resolver, the validity of its entries is controlled by the DNS: When the DNS server sends a DNS response with the mapping from FQDN to IP address, it also includes a time-to-live parameter indicating for how long this mapping can be used by the receiver of the response. The time-to-live (TTL) parameter is encoded in a 4 octet field in units of seconds. This means the server can indicate a TTL of up to ~ 136 years. Which values are used in practice?
According to Stevens [2], Resource Records (RRs), i.e. the mappings provided in the DNS Response "often have a TTL of 2 days." – But note that the re-print of book we used is from 2004, and the observation was probably made in fixed line data networks. When we did a few own checks, we found for example a value of 45 minutes used in a company WLAN, and in one of the UE traces we saw a value of 5 minutes. We did not do a comprehensive analysis, and without that we cannot claim that any of these values is representative for commercial PLMNs, but we think it is an indication that this issue would require further checking.
Note also that different resolver implementations can have a different size limitations for the local cache. So even if the TTL has not yet expired, a resolver may need to override a mapping with a newer resource record.
In practice, there are 3 time values which are relevant for the question, whether in an overload situation the DNS query is a problem: the duration of overload (i.e. for how long does the network apply the access barring?), the TTL, and the (average) time S between subsequent uses of a certain service by the subscriber.
E.g. if the time S until the next usage of a service is typically longer than the TTL (i.e. S > TTL), the DNS query will occur each time the user starts the service. This could be the case e.g. for the first start of a disaster message board application (which occurs perhaps once a year). It could also apply for XCAP, if a user does not change his supplementary service configuration frequently.
On the other hand, if the TTL is longer than the time S until the next usage of the service (i.e. S < TTL), it mainly depends on the duration of the overload, how many users will need to perform a DNS query.

Now one could be tempted to overcome this issue by assigning a very long TTL of, e.g., 10 years. Note, however, that by this the operator would lose the ability to do a dynamic load distribution (which could be essential in an overload situation or in a disaster case), and it could result in a considerable number of routing errors if an operator wants to change the assignment of a service to a certain IP address and UEs keep sending their packets to the old IP address until they find out that something is wrong.
Overall, although there is the possibility that local caching can help to reduce the number of DNS queries, we expect that these queries occur frequently enough to be a serious problem for the use of 5QI as access category criteria type in commercial networks. We deduce this also from the fact that it was quite easy to find a DNS query in a UE trace, and to find further examples in traces from different networks.
Conclusion 2
From what we have described in this section and verified in UE traces, it is anything but clear that the proposal to use the 5QI as criteria type for operator defined access categories will work as intended. Some of the issues described above can be affected by the operator (e.g. by setting longer TTL values), others, like the size of the local cache in the UE and the user behaviour (e.g. the frequency by which the user creates new DNS queries by using other services) he cannot control. To us it does not look like it would be an easy job to get this mechanism in a commercial network running as intended, i.e. to ensure that for the vast majority of requests for the special operator services the UE does not perform a DNS query before sending actual user data.
3. Conclusion
As discussed in section 2.3.1, the use of 5QI as criteria type would create a massive 'free ride' problem, with the consequence that UEs would need to implement this feature, but then no operator would want to use it, or at the latest after the first negative experience during an overload on Silvester evening or during a disaster situation they would give up on using it.
Furthermore, we have seen in section 2.3.2 that it practice it will not be as simple as suggested by the proponents to make 5QI working as a criteria type. In reality it could require quite some 'tuning' on network, UE and applications to avoid that a substantial number of DNS queries get into the way of the proposed mechanism.

In our view, CT1 should not spend further time for trying to develop a barring mechanism that is difficult to deploy and then could easily be bypassed by any user.

4. References
[1]
C1-188050, "Unified access control based on 5QI", Ericsson et al.

[2]
W.R. Stevens, TCP/IP Illustrated, Volume 1, Addison Wesley, 2004.

[image: image1.emf]APP 1

oper. specific service

FQDN =

server1.operatorX.com.

APP 2

e.g.

Web browser

TCP/UDP

Modem UP

Internet

DNS

server

Appl.

server

Connectivity

Manager

Operator defined AC:

- remote IP address (range)

[+ remote port (range)]

for Appl. server

1

7

3

2

Connectivity Manager:

i) maintains routing table

ii) performs mapping of Conn

Request to existing or new

PDU session, based on URSP

and

- App ID

- FQDN

- DNN or

- ͞Connection capabilities͞

iii) initiates PDU session

establishment (if necessary)

8

Mapping req

(FQDN)

Mapping res

 (IP addr)

Resolver:

i) performs mapping from

FQDN to remote IP address

ii) performs DNS Query if

necessary

5

DNS Query

DNS Response

IP addr (DNS-S)

IP addr (AS)

User data

Resolver

Socket

IP

DNS Response

DNS Query

Routing table:

dest addr 1 src addr 1 ͙�͙�NIC1 (WLAN)

dest addr 2 xx.xx.xx.xx ͙�͙�NIC2 (3GPP PDU session 1)

dest addr 3 xx.xx.xx.xx ͙�͙�NIC3 (3GPP PDU session 2)

xx.xx.xx.xx xx.xx.xx.xx ͙�͙�NIC2 (3GPP PDU session 1)

Local

cache

Modem CP

4

Modem CP:

- performs access barring check

for IP packet with DNS Query,

i.e. with

dest IP addr = IP addr DNS-S)

-> mapped to AC for ͣMO data͞�

radio i/f

6

9

Trigger to start application

Figure 1: Message flow after start of the application in the UE until transmission of first user data packet

APP 1
oper. specific service
FQDN = server1.operatorX.com.
APP 2

e.g.
Web browser
TCP/UDP
Modem UP
Internet
DNS server
Appl. server
Connectivity Manager
Operator defined AC:
- remote IP address (range) [+ remote port (range)]
for Appl. server
1
7
3
2
Connectivity Manager:
i) maintains routing table  ii) performs mapping of Conn Request to existing or new PDU session, based on URSP and - App ID - FQDN - DNN or - “Connection capabilities“ iii) initiates PDU session establishment (if necessary)
8
Mapping req  (FQDN)
Mapping res  (IP addr)
Resolver:  i) performs mapping from FQDN to remote IP address ii) performs DNS Query if necessary

5
DNS Query
DNS Response
IP addr (DNS-S)
IP addr (AS)
User data
Resolver
Socket
IP
DNS Response
DNS Query
Routing table: dest addr 1 src addr 1 … … NIC1 (WLAN)
dest addr 2 xx.xx.xx.xx … … NIC2 (3GPP PDU session 1)
dest addr 3 xx.xx.xx.xx … … NIC3 (3GPP PDU session 2)
xx.xx.xx.xx xx.xx.xx.xx … … NIC2 (3GPP PDU session 1)
Local cache
Modem CP
4
Modem CP:
- performs access barring check for IP packet with DNS Query, i.e. with
dest IP addr = IP addr DNS-S) -> mapped to AC for „MO data“
radio i/f
6
9
Trigger to start application

