3GPP TSG CT WG1 Meeting #113

C1-188205
West Palm Beach (FL), USA, 26-30 November 2018
Source:
National Institute of Standards and Technology (NIST), FirstNet
Title:
Issues with off-network MCPTT features, capabilities, and functions
Agenda item:
13.1
Document for:
Discussion
Introduction:

A few years ago, public safety interests requested that 3GPP undertake work items to satisfy general public safety MCPTT features, capabilities, and functions that were not part of the existing LTE services set.

On-network MCPTT services are still being worked on in stage 3. However, for off-network MCPTT services such as Proximity Services (ProSe), User to Network Relay, Call control, and Floor control the work appears to have stalled. Though specified in Stage 1 and Stage 2, these off-network MCPTT services are only partially implemented in stage 3. Sometimes what is present is incomplete, ambiguous, or in error. Some Change Requests (CRs) to correct some of our findings have been submitted and accepted. However, our studies have continued and discovered even more serious issues that need to be addressed before off-network MCPTT services are completely and unambiguously specified, leading to non-interoperable solutions.
The following off-network MCPTT issues are applicable regardless of whether E-UTRAN or WLAN technology is used for ProSe direct discovery.

This document will present some of our findings covering three off-network MCPTT areas and the related 3GPP technical specifications (TS):
· Off-network MCPTT call control (TS 24.379);
· Off-network MCPTT floor control (TS 24.380); and
· Off-network Proximity Services (TS 24.334).
(Guidance is sought about how far back changes need to be made. Rel-13? Rel-14? Rel-15? Or begin with Rel-16?
Off-network MCPTT call control (TS 24.379)

Issue 1:
Some clarification is needed as to what determines the creation of the private call control state machine and what is used (a single MCPTT user ID, a pair of MCPTT user IDs, a single call identifier, or a combination there of) to distinguish between and among private call control state machines within one UE.
Discussion:
MCPTT user ID

As per TS 24.379, 11.2.2.2, “Each private call control state machine is per MCPTT user ID.”

In a private call there are two MCPTT user IDs.

Which MCPTT user ID is it?

Is it the MCPTT user ID of this UE where the private call control state machine is to be created, or the other UE? If it is of this UE, then private calls from all other UEs will be received by a single private call control state machine with the MCPTT user ID of this UE. This leads to ambiguity and inability to distinguish between multiple private calls with multiple individuals on multiple UEs. This implies then that the private call control state machine is per the MCPTT user ID of the other UE and not this UE. Thus, assuming that the private call control state machine within this UE uses the MCPTT user ID of the other UE to distinguish among multiple private calls with this UE and other UEs.
However, if only one MCPTT user ID is used, then what stops the messages from the other UE, from reaching this UE even if the messages are destined for another MCPTT user and not on this UE?

Call Identifier
Assuming that only private call control messages are able to be exchanged between the pair of UEs and their associated MCPTT user IDs of the two participants in the private call, is there a need to check the call identifier IE in a received message with the stored call identifier in this UE? If so, when?

· for all messages received in all states; or
· only in some states.
If only in some states (as is the current text), what is the reason that the call identifier is not needed in all states for all messages?
As per 11.2.2.4.3.2, when in P0 or P1 and a PRIVATE CALL SETUP REQUEST message is received the call identifier is checked.

In P0 there is no call identifier to be checked against, so it does not matter whether the call identifier is checked or not. Does it?

In P1 the state machine is ignoring all messages with the same call identifier as stored by this private call control state machine. However, since the call identifiers are different, and this is a PRIVATE CALL SETUP REQUEST message, this state machine accepts the message and changes its stored call identifier. Therefore, there is no longer a private call control state machine accepting or ignoring a message with the previous call identifier. What happens if a message with that previous call identifier is received and not checked by this private call control state machine?
In other words, is the private call control state machine completely dependent or independent of the call identifier? That is, should all received messages be checked for matching the received call identifier IE to the stored call identifier?
Clarification (and direction) is needed in order to suggest corrections/changes to the private call control state machines.
Issue 2:
Some timers are started but not stopped upon leaving the state where the timer is running.

Possible solutions:

1) should the state machine’s procedures be cleaned up to purposely stop these timers? Or
2) should it be left to the error handling procedures in 11.2.2.4.6, in particular 11.2.2.4.6.3?
NOTE: Some of these timers have consequences relating to issue 4 (interaction of private call control state machine and call type state machine).

Issue 3:
A number of subclauses cover multiple states. Since these subclauses cover multiple states, not all actions are applicable to all the states listed, nor do they include all of the actions needed for all of the beginning states.

Possible solutions:

1) Should all subclauses apply to only one state, if the actions are not the same for all of the beginning states? Or
2) Should all actions be included in the single subclause and condition all of the actions as to whether it applies to all, some, or one state?
Issue 4:
The implementation, association, and coordination of the private call control state machine and the call type state machine are unclear.
Discussion:

As per TS 24.379, the call type state machine is created when a call is initiated (as per 11.2.2.4.2.1) by the user in step 5, but by the time this call control state machine reaches step 9)e) the call type state machine must have the information (i.e., the stored current call type) that is needed from it by the call control state machine. However when the call control state receives a PRIVATE CALL SETUP REQUEST message, as per 11.2.2.4.3.2 or 11.2.2.4.4.1 step 2 creates the call type state machine, the call type state machine cannot receive the PRIVATE CALL SETUP REQUEST message (and its received Call type IE), since it has already been received and consumed by the call control state machine, unless the call control state machine passes a saved copy of the message to the call type state machine for processing.
· Are the call control state machine and the call type state machine independent of each other in that they can each receive the messages by themselves? or
· Does one or the other state machine have to rely on the other state machine to send and receive the message for the other state machine?

NOTE: This issue 4 also affects and is affected in part by some of the timers in issue 2 (timers started but not stopped). The call type state machine starts timers (TFP1 and TFP6), but it is up to the call control state machine to stop the timers. As per 11.2.2.4.5.8 and 11.2.2.4.5.9 when these timers (that were started by the call type state machine) expire it is up to the call control state machine to take action on them (not the call type state machine that started them). Timer TFP2 is sometimes stopped by the call type state machine (11.2.3.4.5.3), but it is started by the call control state machine.
This issue 4 also affects and is affected by the conclusion of the call identifier in issue 1. If the call type state machine transmits its own PRIVATE CALL SETUP REQUEST message using the stored call identifier from the call control state machine, then the other UE’s PRIVATE CALL SETUP REQUEST message with EMERGENCY PRIVATE CALL will be rejected (ignored by error handling procedures) by the call control state machine, if it is in any state except P0. Especially in P1 the other UE will not be able to elevate the existing call to EMERGENCY, or be treated as a new PRIVATE CALL SETUP REQUEST message, since it is reusing the call identifier that is being ignored while in the P1 state.
Issue 5:
In Figure 11.2.3.2-1 there are four triggering events in the text box in the Q0 loopback transition. Two of these events (U: release call; and R: PRIVATE CALL RELEASE) have no descriptions defined later in any subclause for these events when received in Q0.
Discussion:

1) Should these two (2) triggering events be defined in the text?
2) Should these two (2) triggering events be deleted from the Figure? OR

3) Is it to be assumed that the error handling procedures of 11.2.3.4.8.1 and 11.2.3.4.8.2 be applied?

The problem with using the last (#3) is that it would make little sense when it comes to consistency (i.e., sometimes unexpected MONP message are received or MCPTT user indications are received and show in the figure, while other times they are not shown in the Figure) Thus leading to confusion as to the meaning of the text “where there is no handling specified” in the error handling subclauses. It is specified in the Figure, but not in the text.

Issue 6:
There are two different usages and meanings for the timer TFP2. Is there a need for another timer to be defined?
Discussion:

Table B.3.2-1 contains only one of the ways that timer TFP2 is used.
The cause of start is the reception of a PRIVATE CALL SETUP REQUEST message.

Normal stop is the User responds to the incoming call notification.

On expiry is to start TFP7 timer and to send a PRIVATE CALL REJECT message.

However elsewhere (11.2.2.4.2.5, 11.2.2.4.2.6, 11.2.2.4.2.7, and 11.2.2.4.2.8) the timer TFP2 is used completely differently.
The cause of start is expiry of TFP1 with CFP1 at its maximum and in manual commencement mode.

Normal stop is reception of PRIVATE CALL ACCEPT message or PRIVATE CALL REJECT message.

On expiry is to start TFP7 timer.

If a second timer is decided to be needed, then a change to the MO in TS 24.483 will also be needed.

Issue 7:
There are no explicit procedures defined for the expiry of TFP1 with the value of the counter CFP1 not equal to the upper limit, or TFP6 with the value of the counter CFP6 not equal to the upper limit.
Discussion:

Without an explicit procedure defined for the expiry of TFP1 and the value of the counter CFP1 not equal to the upper limit, implies that the error handling procedure of 11.2.2.4.6.3 would apply and thus the upper limit will never be reached unless the upper limit of counter CFP1 is 1. This implies that there is no retransmission of the PRIVATE CALL SETUP REQUEST message. Similarly for TFP6 and CFP6.
Now there are procedures defined in the call type control state machine (11.2.3.4.5.2 and 11.2.3.4.6.2) that are also using TFP1 and TFP6. But then this relates back to issue 4 (interaction of private call control state machine and call type state machine).

Issue 8:
The procedure defined in 11.2.3.4.5.3 is confusing at best and does not work at worst.
Discussion:

The title of this clause "Emergency private call setup request accepted" is misleading as is determining the steps to follow and for which state(s).

If we assume that the title is correct, we reach an impasse because if we sent a PRIVATE CALL SETUP REQUEST message that was an Emergency call, then we would not be in Q1, we would be in Q2.

If we assume that the title is wrong, then the clause applies to receiving a PRIVATE CALL ACCEPT message regardless of whether it is a normal Q1 or emergency call Q2. However, an impasse then occurs with the applicability of the remaining steps. Steps 1-4 apply in both cases. Regarding Step 5, it is not obvious where this comes from, since TFP2 is never started in the call type control state machine.

Step 6 is only applicable for the upgrade case. Step 7 would apply to both since one is establishing the normal call (media session) or establishing the emergency call (media session) from the upgrade. Step 8 would apply to both (normal call Q1 and Emergency call Q2).

Another indication that the title heading is wrong is based on Figure 11.2.3.2-1 because it shows an event R: Call Accept looping to Q1.

If the title is assumed to be correct then this event R: Call Accept is not possible, since there is no other procedure defined for receiving a PRIVATE CALL ACCEPT message.
Issue 9:
11.2.2.4.2.9 covers the case of the user cancelling the off-network private call setup request prior to the acceptance of the call.

Discussion:

Since subclause 11.2.2.4.2 applies generically to both automatic and manual commencement modes private calls, if a user cancels the private call setup request in automatic commencement mode, there is no corresponding reception of the PRIVATE CALL RELEASE message in the P5: pending state. Unlike 11.2.2.4.4.8, which applies only to manual commencement mode.
· Should a new procedure be defined in the automatic commencement mode subclause for this case? or
· Does it mean that 11.2.2.4.2.9 should not be present here in the generic subclause, since in automatic commencement mode a user cannot cancel a private call setup request prior to completion?
Issue 10:
Off-network group call basic call control state “S6: Ignoring incoming call announcement” contains a problem when attempting to leave the state.
Discussion:

Until timer TFG6 (max duration) expires for all UEs, the MCPTT group call (and MCPTT group ID) is considered active and being used (sending GROUP CALL ANNOUNCEMENT messages) or ready to use.

Thus, the need for S6: to ignore (but update information received) GROUP CALL ANNOUNCEMENT messages sent by other UEs using this MCPTT group ID while this UE does not want to participate (when entered from S4, S5, or S7).
A UE stays in S6 until TFG6 has expired for all other UEs. Once TFG6 expires on all UEs for this MCPTT Group call, GROUP CALL ANNOUNCEMENT messages (expiry TFG2) will cease to be sent. Eventually resulting in no more GROUP CALL ANNOUNCEMENT messages being received from any and all UEs while in S6. This will stop timer TFG5 from being started upon receipt of a GROUP CALL ANNOUNCEMENT message, resulting in the final expiry of TFG5 and transitioning to State: S1

The result is that the MCPTT group call is considered by all UEs to have ended.

A UE can enter S6 from S3, S4, S5, and S7 prior to reaching the max duration of the MCPTT group call. In these cases the user has decided not to start or continue to be part of the active MCPTT group call. However, the MCPTT group ID is still being used for this MCPTT Group call, so if call control is still receiving MONP messages for this MCPTT group ID, this UE needs to ignore any and all MONP (GROUP CALL ANNOUNCMENT messages), which it does while in S6.
A UE may leave S6 either by

1) The expiry of TFG5 (no more GROUP CALL ANNOUNCEMENT messages received) and go to S1 Start Stop [MCPTT group call for this MCPTT Group ID is over, done, terminated, etc.] OR
2) The user wanting to re-join the on-going group call with either of these two conditions:

· S3 part of ongoing call [prior to max duration expiration]

· S3 part of ongoing call [after max duration expiration]
It is in these two cases that the issue arises.

Since expiry of TFG6 is not explicitly defined while in state: S6, and was not stopped upon entering state: S6, then the expiry of TFG6 will be ignored while in state: S6.

Why is expiry of TFG6 ignored in S6? Because the user has chosen not to continue to participate in the on-going MCPTT group call, but if the user does return to the on-going MCPTT group call, it will recalculate TFG6 before returning to State S3 using the information from the last received GROUP CALL ANNOUCEMENT message.

Consequences: Timer TFG6 calculation could result in a negative timer value (meaning the MCPTT group call is already over (reached max duration).
Can calculation of TFG6 upon leaving S6 and returning to S3 be prevented from returning a negative or zero value?
If the purpose of state S6 is to hold the non-participating user for this MCPTT group call (and MCPTT group ID) until the max duration for the call is reached, and a test is not performed to test the value of TFG6, then the answer is No.
This results in an immediate transition back from S3 to S6. Where the UE either awaits expiry of TFG5 or another MCPTT user interaction (10.2.2.4.5.3). A potential looping delay until all UEs declare TFG6 expiration (max duration is reached) exists.

More questions:

a) Can another MCPTT group call use an existing MCPTT group call ID that has not completed the transition from S6 to S1?
b) When can an MCPTT group ID be reused?

c) Can an MCPTT user continue to use an existing MCPTT group call which is about to reach max duration?

d) Is the transition from S6 to S3 considered the re-joining of the original MCPTT group call or creation of a new MCPTT group call?

e) Can an MCPTT user cause all other UEs to change (extend /recalculate) TFG6?
Issue 11:
For off-network Broadcast group call control, there are no error handling procedures to handle unexpected messages received, user indications or expiry of timers.

Discussion:

Given that there are no error handling procedures defined for broadcast group call control, one can either assume that the protocol is completely defined and that all possibilities are covered by the present text or assume that the protocol is not completely specified.

If one assumes the former, then here are some examples needing to be addressed:

What happens when a GROUP CALL BROADCAST message is received while in B2: in-progress broadcast group call? Currently unspecified.
What happens when a GROUP CALL BROADCAST message is received while in B3: pending user action? Currently unspecified.
What happens when a GROUP CALL BROADCAST END message is received in B3: pending user action? Currently unspecified.
What happens when TFB1 expires in B1: start-stop state? This should not happen but currently timer TFB1 is not stopped when leaving the B2 or B4 state after receiving GROUP CALL BROADCAST END message.
What happens when the user rejects the call and does not start TFB1 before leaving B3 and enters B4? There is a potential that the state machine will remain in B4 indefinitely unless the GROUP CALL BROADCAST END message is received; however, it is transmitted only once and could have been not received.

If one assumes the latter, then there is work yet to be submitted to complete the specification of the protocol (i.e., address the items listed above).
Issue 12:
As written only the initiator of the group call broadcast can actively terminate that call.
Discussion:

However, the stage 1 and stage 2 requirements permit another user (realized in stage 3 floor control) to pre-empt the originating user. If this happens, there is no way for the new user to terminate the call.

Off-network MCPTT floor control (TS 24.380)

Issue 13:
Are floor request queues reordered?
Discussion:

In the off-network mode there is no centralized floor arbitrator. The UE with the current talker is assumed to be the floor arbitrator and the one which holds the list of floor requests for this particular group call. When the list is passed from the previous (current) floor arbitrator to the new (candidate) floor arbitrator the structure of the list passed is a single list. The ordering of the components within this list are not required to be in order, since each component contains the value of the position in the original queue. When queuing is supported and a floor request is received and it is not denied, it is either considered as pre-emptive or placed in the queue. If the floor request is not pre-emptive, then it needs to be placed in the queue. Where is it placed? Is it placed at the end of the queue since it is the last floor request to be received? Is it placed in the queue based on its relative priority with the other floor requests already in the queue?
For example. If the current queue has one element: X1 and a second floor request (Y2) is received. Is Y2 placed after X1 in the queue or is Y2 placed before X1? Is the floor priority of the second request even considered when placing the second request in the queue?
Issue 14:
If an MCPTT user can make multiple floor requests (7.2.3.8.10):
· How is the floor arbitrator to handle the multiple floor requests from the same MCPTT user?
· What is used to make the distinction between multiple floor requests (new vs. retransmission)?
· Floor priority field, floor indicator field, or both?
Discussion:

Case 1)
An MCPTT user after making a floor request goes to the ‘O: pending request’ state and awaits a response (Deny, Grant, Queue) from the floor arbitrator. If the floor arbitrator queues the floor request for this MCPTT user, it sends a Floor Queue Position Info message. If this response message is lost, the MCPTT user will send another floor request message. What does the floor arbitrator do with this floor request? As per 7.2.3.5.4 it places the retransmitted floor request into the queue for a second time. Result: the floor request is placed twice in the queue, but only one request is known by the sending MCPTT user based on the received Floor Queue Position Info message.
Case 2)
An MCPTT user after making a floor request goes to the ‘O: pending request’ state and awaits a response (Deny, Grant, Queue) from the floor arbitrator. If the floor arbitrator sends a Floor Granted message that is not received, the MCPTT user will retransmit the floor request. However, the floor arbitrator has transitioned to the ‘O: pending granted state’ and will respond with a Floor Deny message. The floor deny message will result in transitioning the MCPTT user to the ‘O: has no permission’ state, where any retransmissions of the Floor Granted message to the MCPTT user will be discarded by the receiving MCPTT user (7.2.3.1).
Should the leaving floor arbitrator be required to “check” if the received Floor Request message was sent by the MCPTT user to whom this leaving floor arbitrator sent the Floor Granted message?

Case 3)
An MCPTT user, once in the ‘O: queued’ state, can only send a second floor request when timer T203 expires. At this point the floor request may be the same as the previous floor request, or a new floor request indicating a new floor priority. What is the action by the current floor arbitrator when it receives this second floor request? Does it queue this second floor request (and send a Floor Queue Position Info message) or does it search the queue to see if the MCPTT user’s floor request is already present in the queue and if so, not make a second entry in the queue? (However, in this case will it send a Floor Queue Position Info message of the previous floor request from the MCPTT user?) If the second floor request has a different floor priority than the first, is this second floor request added to the queue (and a Floor Queue Position Info message sent)? Is the previous floor request entry removed?
Should the current floor arbitrator be required to “check” if the received Floor Request message is already in the queue? Only values available to “check” are SSRC, User ID and floor priority.

Issue 15:
There is a conflict between the definition of the ‘O: silence’ state (7.2.3.3.1) and the actions in 7.2.3.3.3.
Discussion:

The text of 7.2.3.3.1 states “is unaware of any MCPTT client acting as a floor arbitrator”, while 7.2.3.3.3 in the “otherwise” part compares the stored SSRC of the current floor arbitrator. From 7.2.3.3.1 there cannot be a stored SSRC of the current floor arbitrator, since it is unaware of any MCPTT client acting as a floor arbitrator. The stored SSRC was cleared when transitioning to the ‘O: silence’ state (as per 7.2.3.4.3, 7.2.3.4.4, 7.2.3.5.5, 7.2.3.5.11, 7.2.3.6.5, 7.2.3.7.5, 7.2.3.7.6, 7.2.3.8.13). The only exception is in 7.2.3.8.7, which given this information seems to be a mistake and the step, “shall clear the stored SSRC of the current arbitrator” should be added. However, the issue still remains on how to resolve the conflict between 7.2.3.3.1 and 7.2.3.3.3.
Additionally, what about the clearing of the stored SSRC of the candidate (floor) arbitrator and the stopping of all timers except T230?
Issue 16:
With the addition of the candidate (floor) arbitrator to the current (floor) arbitrator the naming, procedures, checking, and setting of the related values do not appear to have been completed.
Discussion:

As per 3.1 definitions, the two terms are candidate arbitrator and current arbitrator, However, in the text there are 26 instances of “candidate arbitrator” and 6 instances of “candidate floor arbitrator”; and 14 instances of “current arbitrator” and 50 instances of “current floor arbitrator”. This leads to improper matching of values stored and values used in checking.
Also the term, floor control server, is used to mean which one, two or all four of these when in the off-network mode. If “floor control server” is used for on-network (as per 8.2.5) and “floor arbitrator” is used for off-network (as per 8.2.5), then there should not be any occurrence of “floor control server” in clause 7. However, there are at least 7 occurrences. Clause 8.2.12 states that the Queue Position Info message is sent by the floor control server, which implies that this message is only for on-network mode, but the next statement states that the message is used in both on- and off-network modes. In 4.1.1.1, 4.1.1.3, and 4.1.1.5 there is no mention of floor arbitrator. Floor arbitrator is first introduced in clause 7. Consistency and alignment could go a long way in reading and understanding.
The procedures do not appear to have been completed. For example, 7.2.3.5.7 does not update either the stored SSRC of the candidate (floor) arbitrator or the current (floor) arbitrator. It should be updating at least one of these depending on the expected outcome and recovery of a failed attempt to pass the floor to another off-network floor participant. Since in 7.2.3.7.2 there is a check for a match between the SSRC of the RTP media packet and the stored SSRC of the current floor arbitrator (if not candidate (floor) arbitrator). If the pre-empted floor participant does not receive confirmation that the pre-empting floor participant has taken over as current (floor) arbitrator after maximum expiry, why take from the queue if one is present? Why does the original arbitrator not take back the floor that was pre-empted? (That is the pre-empted user has lost his turn and to regain his turn, must request the floor again, which could be placed at the end of the queue.)
Off-network Proximity Services (TS 24.334)

Issue 17:
A number of implementation timers, values, and counters are not uniquely specified.
Discussion:

There are a number of stated implementation timers (i.e., Timer with value T) and associated counters. There are at least six implementation timers using the same terminology but meaning different, and as yet unnamed, timers (See 10.4.1 there are two: one for cause #1 and another for cause #4, 10.4.2.5, 10.4.4.3, 10.5.5.1, a, 10.6.5.1, and 10.7.5.1). Should these timers be specified (also TS 24.333 (MO)) or at least distinctly named?

Issue 18:
Descriptions of timers from Table 13.2.1 do not always agree with text in subclauses of 10.4.
Examples:

· T4112: Under normal stop column states that Timer is stopped when receiving a DIRECT_REKEYING_REQUEST message from the peer UE and satisfying the conditions specified in subclause 10.4.8. While text in 10.4.8.5 states that if timer T4112 is running (meaning that the receiving UE has initiated Direct Link rekeying) then the DIRECT_REKEYING REQUEST is ignored. Proposal: Remove incorrect text from the table.
· T4107: Timer is used to control the length of time that the UE-to-network relay advertises the ECGI. When T4107 expires there is no procedure defined as what the action should be: e.g., stop advertising, keep alive, what?
· T4106: It is unclear whether T4106 is stopped when a CELL_ID_ANNOUNCEMENT_REQUEST is sent or remains running during the Monitoring of TMGI. Since the event, expiry of T4106, results in the fact that T4106 is not running, one could assume that T4106 should be stopped when triggered by the upper layer to send a CELL_ID_ANNOUNCEMENT_REQUEST.
Issue 19:
Keep Alive procedures are not defined for peer UEs.

Discussion:

10.4.3.1 states that the procedure can be initiated by both UEs in the established direct link.

However, there are no link setup procedures defined for the Target UE when it is not acting as a UE-to-Network relay (i.e., no inactivity timer T4102 started) AND there are no keepalive procedures defined for the Peer UE because T4108 is only started in UE-to-Network relay, so when timer T4102 expires, it cannot (as per 10.4.3.5.2 describes) initiate its own keepalive procedure.
Issue 20:
10.4.6.2 - For the selection of IP version to work as written, it must be assumed that every UE supports both IPv4 and IPv6.

Discussion:

This could be avoided if during setup, incompatible combinations are removed before reaching this state. However, the cause value (#5 IP version mismatch) appears only to be applicable when Mission Critical Services (MCS) are expected of the UE-to-Network Relay UE and it does not support IPV6.
Issue 21:
There is no abnormal case defined for the timer T4113’s expiry (first or any retransmission)
Discussion:

10.4.8.2 starts timer T4113, but 10.4.8.6 does not contain an abnormal case for T4113 expiry maximum (i.e., what happens if a DIRECT_REKEYING_REQUEST message is not received when T4113 expires?) Table 13.2 states that the DIRECT_REKEYING_TRIGGER message is retransmitted. As written, it is endless. What guarantees that the procedure is not perpetually retransmitting?
Issue 22:
Operation of Timer T4112 is unclear

Discussion:

10.4.8.3 states “If the timer T4112 is running in the target UE, then …” According to Figure 10.4.8.2.1, T4112 is only running on the initiating UE, not the target UE. The only other possible way for this to happen is if both UEs sharing this direct communication initiate the Direct Link Rekeying Procedures at the same time. Thus both UEs are acting as both initiating UE and target UE for direct link rekeying procedures.
10.4.8.4 states that timer T4112 is stopped upon receipt of DIRECT_REKEYING_RESPONSE; however, it is unclear that timer T4112 is still running during the DIRECT SECURITY_MODE_COMMAND message exchange.
Issue 23:
10.7.5.1 does not define the action when the maximum number allowed retransmissions for REMOTE_UE_INFO_REQUEST message is reached (i.e., abort procedure and (continue or release the direct communication link))
Discussion:

As written not only is the timer and maximum number of retransmissions implementation specific, but also the procedure upon reaching the maximum number of retransmissions is implementation specific, since it is not explicitly stated?
Conclusion:

What guidance can be provided as to whether to target the change requests (CRs) to the frozen releases (Rel 13, Rel 14, and Rel 15) considering FASMO; or Release 16?
