

	
3GPP TSG-CT WG4 Meeting #104-e	C4-213029
E-Meeting, 19th – 28th May 2021
	CR-Form-v12.1

	CHANGE REQUEST

	

	
	29.501
	CR
	0104
	rev
	-
	Current version:
	16.5.0
	

	

	For HELP on using this form: comprehensive instructions can be found at
http://www.3gpp.org/Change-Requests.

	

	Proposed change affects:
	UICC apps
	
	ME
	
	Radio Access Network
	
	Core Network
	X

	

	Title:	
	Nested cardinality

	
	

	Source to WG:
	China Mobile, China Southern Power Grid

	Source to TSG:
	CT4

	
	

	Work item code:
	SBIProtoc16
	
	Date:
	2021-05-19

	
	
	
	
	

	Category:
	F
	
	Release:
	Rel-16

	
	Use one of the following categories:
F (correction)
A (mirror corresponding to a change in an earlier 													release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)
Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	Use one of the following releases:
Rel-8	(Release 8)
Rel-9	(Release 9)
Rel-10	(Release 10)
Rel-11	(Release 11)
…
Rel-15	(Release 15)
Rel-16	(Release 16)
Rel-17	(Release 17)
Rel-18	(Release 18)

	
	

	Reason for change:
	The cardinality for the nested data type is not precisely described. See discussion paper in C4-213028.

	
	

	Summary of change:
	To introduce nested cardinality

	
	

	Consequences if not approved:
	Unclear data type definition leads to interoperability issue.

	
	

	Clauses affected:
	5.2.4.2, 5.3.9

	
	

	
	Y
	N
	
	

	Other specs
	
	X
	 Other core specifications	
	TS/TR ... CR ...

	affected:
	
	X
	 Test specifications
	TS/TR ... CR ...

	(show related CRs)
	
	X
	 O&M Specifications
	TS/TR ... CR ...

	
	

	Other comments:
	

	
	

	This CR's revision history:
	

Page 1

* * * First Change * * * *
[bookmark: _Toc51853093][bookmark: _Toc51859767]5.2.4.2	Structured data types
The structured data types shall represent an object (see IETF RFC 8259 [3]). The structured data types shall contain attributes that are simple data types, structured data types, arrays (see below), maps (as defined below), enumerations, data types describing alternative data types, data types describing combinations of data types or "Any Type" (as described below).
An array (see IETF RFC 8259 [3]) shall represent a list of values without keys and with significance in the order of sequence. All values shall be of the same type.
A map shall represent an object (see IETF RFC 8259 [3]) with a list of key-value pairs (with no significance in the order of sequence), where all keys are of type string and shall be unique identifiers assigned by the application rather than by the schema, and where all values shall be of the same type.
NOTE 1:	Maps are supported by the OpenAPI specification [4] as described at https://swagger.io/docs/specification/data-models/dictionaries/. Maps can enable a faster lookup of elements identified by some key in huge data structures compared to arrays that contain the key within the elements. Maps can also be used instead of arrays to modify individual elements when modification instructions of the PATCH method are compliant to IETF RFC 7396 [7].
Each structured data type shall be specified in a separate clause as illustrated in table 5.2.4.2-1.
Table 5.2.4.2-1: Definition of type <Data type>
	Attribute name
	Data type
	P
	Cardinality
	Description
	Applicability

	<attribute name>
	"<type>" or "array(<type>)" or "map(<type>)" or "Any Type"
	"M", "C" or "O"
	"0..1", "1" or "M..N"
	<only if applicable>
	

Table 5.2.4.2-2: Definition of type <Data type> with nested structures
	Attribute name
	Data type
	P
	Cardinality
	Description
	Applicability

	<attribute name>
	"array(map(<type>)" or "map(array(<type>)" or" array(array(<type>)" or "map(map(<type>)"
	"M", "C" or "O"
	"M1..N1(M2..N2)"
	<only if applicable>
	

Attribute name: Name of attributes that belong to the specified data type. The attribute names within a structured data type shall be unique, and their relative order inside the structured data type shall not imply any specific ordering of the corresponding JSON elements in a JSON object.
NOTE 2:	The JSON specification (IETF RFC 8259 [3]) allows duplicate keys in a JSON object, but its usage is discouraged, since it makes interoperability more difficult, and makes the behavior of the JSON parsing software unpredictable. Similarly, that RFC encourages to make implementations not dependent on attribute ordering.
Data type: Data type of the attribute. If the data type is indicated as "<type>", the attribute shall be of data type <type>. If the data type is indicated as "array(<type>)", the attribute shall be an array (see IETF RFC 8259 [3]) that contains elements of data type <type>. If the data type is indicated as "map(<type>)", the attribute shall be an object (see IETF RFC 8259 [3]) encoding a map that contains as values elements of data type <type>. <type> can either be "integer", "number", "string" or "boolean" (as defined in the OpenAPI specification [4]), or a data type defined in a 3GPP specification. If the data type is indicated as "Any Type", the attribute can either be "integer", "number", "string", "boolean", "array" or "object" (as defined in the OpenAPI specification [4]), or a data type defined in a 3GPP specification.
P: Presence condition of a data structure in request body. It shall be one of "M" (for Mandatory), "C" (for Conditional) and "O" (for Optional).
Cardinality: Defines the allowed number of occurrence of data type <type>. A cardinality of "M..N", is only allowed for data types "array(<type>)" and "map(<type>)" and indicates the number of elements within the array or map; the values M and N can either be the characters "M" and "N", respectively, or integer numbers; with M being greater than or equal 0, and N being greater than 0 and M. For data type with nested structures, the cardinality is expressed in a nested manner, each level of the M and N values describe the cardinality of the corresponding level of the data structure. For data type "<type>" and "Any Type", the cardinality shall be set to "0..1" if the Presence condition is "C" or "O", and to "1" if the Presence condition is "M".
Description: Describes the meaning and use of the attribute and may contain normative statements.
Applicability: If the attribute is only applicable for optional feature(s) negotiated using the mechanism defined in clause 6.6 of 3GPP TS 29.500 [2], the name of the corresponding feature(s) shall be indicated in this column. If no feature is indicated. The attribute can be used with any feature.
NOTE 3:	The cardinality of "0..N" does not imply that the presence condition of the array or map is optional or conditional, i.e. the presence condition can be "M" while the cardinality is "0..N", the presence condition can be "O" or "C" while the cardinality is "1..N".
NOTE 4:	If no optional features are defined for an API, the applicability column can be omitted for that API.
* * * Next Change * * * *
[bookmark: _Toc19702516][bookmark: _Toc27751677][bookmark: _Toc35971763][bookmark: _Toc35976012][bookmark: _Toc44849469][bookmark: _Toc51853111][bookmark: _Toc51859784]5.3.9	Structured data types
For a structured data type, as defined in clause 5.2.4.2, the OpenAPI specification [4] file shall contain a definition in the components/schemas clause defining a schema with the name of the structured data type as key.
The schema shall contain:
-	"type: object";
-	if any attributes in the structured data type are marked as mandatory, a "required" keyword listing those attributes; and
-	a "properties" keyword containing for each attribute in the structured data type an entry with the attribute name as key and:
1.	if the data type is "<type>":
a.	if the data type of the attribute is "string", "number", "integer", or "boolean";
i)	a type definition using that data type as value ("type: <data type>"); and
ii)	optionally "description: <description>", where <description> is the description of the attribute in the table defining the structured data type; or
b.	otherwise a reference to the data type schema for the data type <data type> of the attribute, i.e. "$ref: '#/components/schemas/<data type>'" if that data type schema is contained in the same OpenAPI specification file and "$ref: '<filename>#/components/schemas/<data type>'" if that data type schema is contained in file <filename> in the same directory on the same server;
2.	if the data type is "array(<type>)":
a.	a type definition "type: array";
b.	an "items:" definition containing:
i).	if the data type of the attribute is "string", "number", "integer", or "boolean", a type definition using that data type as value ("type: <data type>"); or
ii).	Otherwise a reference to the data type schema for the data type <data type> of the attribute, i.e. "$ref: '#/components/schemas/<data type>'" if that data type schema is contained in the same OpenAPI specification file and "$ref: '<filename>#/components/schemas/<data type>'" if that data type schema is contained in file <filename> in the same directory on the same server;
c.	if the cardinality contained an integer value <m> as lower boundary, "minItems: <m>"; and
d.	if the cardinality contained an integer value <n> as upper boundary, "maxItems: <n>"; and
e.	optionally "description: <description>", where <description> is the description of the attribute in the table defining the structured data type;
3.	if the data type is "map(<type>)":
a.	a type definition "type: object"; and
b.	an "additionalProperties:" definition containing:
i).	if the data type of the attribute is "string", "number", "integer", or "boolean", a type definition using that data type as value ("type: <data type>"); or
ii).	Otherwise a reference to the data type schema for the data type <data type> of the attribute, i.e. "$ref: '#/components/schemas/<data type>'" if that data type schema is contained in the same OpenAPI specification file and "$ref: '<filename>#/components/schemas/<data type>'" if that data type schema is contained in file <filename> in the same directory on the same server;
c.	if the cardinality contained an integer value <m> as lower boundary, "minProperties: <m>"; and
d.	if the cardinality contained an integer value <n> as upper boundary, "maxProperties: <n>"; and
e.	"description: <description>", where <description> is the description of the attribute in the table defining the structured data type.
NOTE:	An omission of the "minProperties", and "maxProperties" keywords indicates that no lower or upper boundaries respectively, for the number of properties in an object are defined. An omission of the "minItems", and "maxItems" keywords indicates that no lower or upper boundaries, respectively, for the number of items in an array are defined.
4.	if the data type is "Any Type":
a.	if no properties to be defined, a pair of curly braces after the attribute name key "<attribute name>: {}", which is shorthand syntax for an arbitrary-type schema; or
b.	at least one of the following properties:
i)	if null value is allowed, "nullable: true"; or
ii).	"description: <description>", where <description> is the description of the attribute in the table defining the structured data type.
Example:
Table 5.3.9-1: Definition of type ExampleStructuredType
	Attribute name
	Data type
	P
	Cardinality
	Description
	Applicability

	exSimple
	ExSimple
	M
	1
	exSimple attribute description
	

	exArrayElements
	array(string)
	O
	0..10
	exArrayElements attribute description
	

	exMapElements
	map(ExStructure)
	M
	1..N
	exMapElements attribute description
	

	exNestedArray
	array(map(string))
	M
	0..N(1..M)
	exNestedArray attribute description
	

	exNestedMap
	map(array(string))
	O
	1..N(2..M)
	exNestedMap attribute description
	

	exAnyTypeNullableElement
	Any Type
	O
	0..1
	exAnyTypeNullableElement attribute description
	

	exAnyTypeNoDescription
	Any Type
	O
	0..1
	n/a
	

The data structure in table 5.3.9-1 is described in an OpenAPI specification file as follows:
components:
 schemas:
 ExampleStructuredType:
 type: object
 required:
 - exSimple
 - exMapElements
 properties:
 exSimple:
 $ref: '#/components/schemas/ExSimple'
 exArrayElements:
 type: array
 items:
 type: string
 minItems: 0
 maxItems: 10
 description: exArrayElements attribute description
 exMapElements:
 type: object
 additionalProperties:
 $ref: '#/components/schemas/ExStructure'
 minProperties: 1
 description: exMapElements attribute description
 exNestedArray:
 type: array
 items:
 type: object
 additionalProperties:
 type: string
 minProperties: 1
 description: exNestedArray attribute description
 exNestedMap:
 type: object
 additionalProperties:
 type: array
 items:
 type: string
 minItems: 2
 minProperties: 1
 description: exNestedMap attribute description
 exAnyTypeNullableElement:
 nullable: true
 description: exAnyTypeNullableElement attribute description
 exAnyTypeNoDescription: {}

* * * End of Changes * * * *

